Vysoká škola báňská – Technická univerzita Ostrava

ELEKTROMOBILITA II
učební text

Bohumil Horák
Kristýna Friedrichková
Jiří Kazárik
Jana Nowaková
Zdeněk Slanina

Ostrava 2014
OBSAH

1 HISTORIE ELEKTROMOBILITY .. 5
 1.1. Nástup elektromobilů .. 5
 1.2. Vývoj elektromobilů v České republice 6
 1.3. Elektromobilita na VŠB-TU Ostrava .. 9
 1.4. Elektromobily v zahraničí .. 23
 1.5. Elektromobily začátku nového milénia 31

2 Baterie ... 35
 2.1. Olověné akumulátory ... 38
 2.2. Nikl-kadmiové akumulátory ... 59
 2.3. Nikl-metal hybridy ... 69
 2.4. Lithium iontové akumulátory ... 71
 2.5. Lithium polymerové akumulátory ... 73
 2.6. Lithium-železo-fosfátové baterie .. 76
 2.7. Neelektrické testování baterií .. 78

3 Balanční systémy .. 84
 3.1. Topologie BMS jednotek .. 85

4 Balanční systémy .. 90
 4.1. Historie výroby baterií v Čechách .. 90
 4.2. Další výroba baterií ... 92
 4.3. Nanotechnologie ve výrobě baterií pro elektromobily 94
 4.4. Historie hybridních vozidel ... 95
 4.5. Automobilový sport ... 104

5 PALIVOVÉ ČLÁNKY .. 116
 5.1. Historie .. 116
 5.2. Výhody a nevýhody palivových článků 119
 5.3. Srovnání palivového článku s electrochemickými akumulátory 123
 5.4. Srovnání palivového článku s motory s vnitřním spalováním 124
 5.5. Princip fungce palivového článku ... 125
 5.6. Typy palivových článků ... 126
 5.6.1 Palivové články s elektrolytem na bázi tekutých uhličitanů (MCFC) 128
 5.6.3 Alkalické palivové články .. 132
 5.7. Konstrukce a vlastnosti palivových článků typu PEM 138
 5.7.1 Charakteristiky palivového článku typu PEM 143
 5.8. Soustavy s palivovými články ... 151

6 VODÍK ... 157
 6.1. Základní fyzikálně - chemické vlastnosti 158
 6.1.1 Skupenství 159
 6.1.2 Vůně, barva a chuť ... 159
 6.1.3 Jedovatost a zadušení ... 159
 6.1.4 Únik ... 160
 6.1.5 Hořlavost .. 161
 6.2. Výskyt v přírodě ... 162
 6.2.1 Tvorba vodíku v přírodě a jeho průmyslová výroba 163
 6.3. Skladování vodíku ... 166
6.3.1 Skladování plynného vodíku ...166
6.3.2 Skladování tekutého vodíku ...167
6.3.3 Skladování prostřednictvím hydridů kovů ...168
6.3.4 Uhlíková adsorpce ..169
6.3.6 Oxidy železa ..169
6.3.7 Skleněné mikrosféry ...170
6.4. Využití ..170
6.5. Sloučeniny vodíku ..171
6.5.1 Hydridy ..171
6.5.2 Kyslíkaté kyseliny, hydroxidy a hydráty solí173
6.5.3 Organické sloučeniny ..173
7 VÝROBA PLYNŮ ZE VZDUCHU ..175
 7.1. Úvod ...175
 7.2. Vzduch ..177
 7.3. Kryogenní technologie ...185
 7.4. Novodobá dělicí zařízení ...208
 7.5. Měření a regulace v kryogenních technologiích213
 7.6. Řízení procesu ..218
 7.7. Silnoprává a napájecí zařízení ...223
 7.8. Manipulace, skladování, doprava ...224
1 HISTORIE ELEKTROMOBILITY

1.1. Nástup elektromobilů

Již v roce 1835 profesor Sibrandus Stratingh z Groningen (Holandsko) navrhl malý elektromobil postavený jeho asistentem Christopherem Beckerem.

První silniční vozidlo, které v soutěži prokazatelně překonalo rychlost 100 km/h, byl elektromobil Belgičana Camilla Jenatzyho v roce 1899. A Elektromobil Torpédo KID dosáhl v roce 1902 dokonce rychlosti téměř 170 km/h.

V této době již jezdila auta se spalovacím motorem, žádné však nebylo tak tiché, bezpečné a spolehlivé jako elektromobil, o rychlosti výše uvedené ani mluvě.

Náš Ing. František Křižík postavil v roce 1895 svůj první elektromobil poháněný stejnosměrným elektromotorem o výkonu 3,6 kW, druhý realizovaný typ byl opatřen v každém zadním kole elektromotorem 2,2 kW. Třetí vůz jím postavený měl hybridní pohon pro prodloužení dojezdu.
V té době byly ve Vídni běžně k vidění kočáry s elektrickým pohonem. Tyto vozy často stávaly před známou Sachrovou cukrárnu, aby nabíjely své akumulátory ze zásuvek, které byly instalovány v plůtku na chodníku.

V USA jezdilo v roce 1900 více elektromobilů než vozů se spalovacím motorem a dosahovaly velké obliby pro jednoduchost ovládání – hlavně nebylo nutné fyzicky náročné startování klikou. V tomto roce bylo vyrobeno o třetinu více elektromobilů než automobilů.

Zásadní zvrat přinesl velký Fordův nápor zavedením sériové výroby modelu „T“, který v brzku ovládl trh pro svou spolehlivost. Tím byl elektromobil na dlouhou dobu vytlačen z výroby i dalšího vývoje.

1.2. Vývoj elektromobilů v České republice
Renesanci zájmu o elektromobil přinesla až ropná krize kolem roku 1965, i když v mezidobí došlo k ojedinělým pokusům o jeho použití. Stalo se tak během první světové války, kdy Škodovy závody v Plzni vyrobily několik nákladních elektromobilů pro plzeňské pivovary.

Podobně majitel elektrotechnické továrny ve Vsetíně pan Sousedík si pro svou potřebu zkonstruoval ve třicátých letech minulého století elektromobil velmi pokrokové konstrukce opět s elektromotory přímo v kolech, jímž dojížděl do závodu a konal místní pojíždějky po řadu let.

Nejenom ropná krize, ale i nepříznivý vývoj životního prostředí zejména v centrech velkých měst, vedl naše státní orgány k tomu, aby pověřily některé organizace vývojem a vyrobením vzorku elektromobilů s příslušným krytím nákladů ze strany státu.

VÚES (dříve Výzkumný ústav elektrických strojů) v Brně spolu s brněnským Vysokým učením technickým vyrobil po základním ověření systémů, které již byly použity v zemích tehdejšího západního světa, dva osobní a dva dodávkové prototypy, které jsou nyní v muzeu (1969-1972).

Ústav silniční a městské dopravy v Praze byl další pověřenou organizací. Zde byla zvolena přestavba automobilu F127. Vůz byl podroben rozsáhlým jízdním zkouškám,
z kterých bylo vytěženo množství cenných technických údajů. Po provedení zkoušek byl převzat jedním z městských orgánů k používání. Pražský Ústav pro výzkum motorových vozidel (dnes TÜV SÜD Auto CZ, dále jen ÚVMV) v této době neprojevil o elektromobil žádný zájem, byl zcela soustředěn jen na problematiku automobilů. Státem zadaný úkol byl ukončen a zdálo se, že vyzněl zcela do ztracena.

Obr. 4 - První model vozíku s elektromotorem z roku 1828 sestavil slovenský fyzik a konstruktér Štefan Anian Jedlík

Nebyla to však pravda. Podněcováni nastalou situací se objevili, rozseti po celém území státu schopní jednotlivci či malé skupinky tzv. amatérů, ve skutečnosti však často prvořadých odborníků, kteří nemohli svou znalost ve svém zaměstnání uplatnit, a ti převzali štafetu vývoje elektromobilů. Bylo to vždy s použitím vlastního volného času na úkor vlastní rodiny, za vlastní peníze na použitý materiál. Tito nadšenci investovali do myšlenky, realizace elektromobilů velikou dávkou píle, což se projevilo na výsledcích, které nezůstaly nijak pozadu oproti renomovaným pracovištím. Stalo se tak i zásluhou dobrého organizačního propojení těchto skupin přes sdružení ELEKTROMOBILY a pravidelným pořádáním celostátních setkání. Nejvýznamnější pokroky a výtvory:

- Václav Chaluš vytvořil ve své garáži superlehké dvoumístné městské vozidlo o hmotnosti 280 kg včetně tehdy jediných dostupných olověných akumulátorů. Vůz mu sloužil do jeho smrti.
- Plzeňská skupina, kterou tvořili převážně strojvůdci z depa ČSD pánové Grulich a Pytlík, zhotovila a v ulicích Plzně předváděla elektromobil z přestavěného vozu Trabant. Stejné vozidlo použil jako základ pan Kudlíč.
- Opavská skupina postavila také dvě vozidla, která byla připuštěna do silničního provozu. Prvním byl Trabant pana Střílky osazený tyristorovým regulátorem pana Šulce. Druhé vozidlo bylo od počátku optimalizováno jako
elektromobil, vyrobeno ve spolupráci s vysokomýtskou Karosou. Opět dvoumístné vozidlo mělo jen polovinu hmotnosti předchozího, avšak přetrvával stále problém s malou životností startovacích akumulátorů pro nedostupnost trakčních.

- Egon Sedláček a Ing. Novák z Běchovic použili u nás poprvé tranzistorový regulátor o nadzvukové frekvenci a nabíjení pomocí pulzního nabíječe, který již mohl, vzhledem ke své hmotnosti, být součástí vozidla. Vůz dodnes slouží v běžném provozu.

- Pan Langmiller a jeho přátelé z Ostrova nad Ohří vytvořili na podvozku Wartburg elektromobil k tahání dvou vlečených přívěsů v Karlových Varech do roku 1997.

- Pan Bělonohý z Jičína postavil elektromobil na zkráceném podvozku Škoda Favorit. Vůz byl připuštěn do provozu na veřejných komunikacích.

- Miloslav Hamerník z Českých Budějovic zkonstruoval několik vozidel na profesionální úrovni, které sloužily postiženým občanům, a řadu dětských vozítek. Zkonstruoval také soutěžní vozidlo, které se umístilo ve švýcarském Emmenu v roce 1988 na předním místě.

- Jaromír Vegr postavil závodní monopost, se kterým v roce 1989 zvítězil ve švýcarské FORMULE Elektró.

Zájezdy na „Velkou cenu elektromobilů“ do švýcarské, které sdružení ELEKTROMOBILY pořádalo, neměly ale za účel jen závodit, ale daleko více „byť při tom“ a uvidět, jakým směrem se vývoj v tomto odvětví ubírá.

UVMV Praha zhotovil prototypy elektromobilů na bázi škoda Favorit.

Výroba tehdy přímo navazovala na výrobu elektromobilu Škoda ELTRA odvozeného od Škody Favorit. Od roku 1994 – 1997 se k výrobě používaly díly převzaté ze Škody 120 L (přední směrové blikače a světlomety), Škody Favorit (podvozek, skla, zrcátka, kliky, zámky a interiér) a ze Škody Pick-up (zadní sdružené svítilny). Pohon zajišťoval asynchronní elektromotor o max. výkonu 40 kW a byl napájen přes měnič frekvence
ze sady 30 kusů Ni-Cd baterii SAFT typu STM5-100. Vozidlo s nimi dosahovalo rychlosti 110 km/h a ujelo na jedno nabíti 120 km.

V roce 1997 byla výroba elektrické BETY zcela ukončena a začala spolupráce s korejskou automobilkou Hyundai Motors. Od ní byly převzaty motor, palubní deska s přístroji a později také celý interiér včetně brzd a to z modelu Hyundai Accent. Automobil této konstrukce se u nás ještě donedávna vyráběl. Celkem se tedy vyrobilo pouze cca 100 kusů elektromobilů BETA. Většina jich putovala do zahraničí, díky velmi moderní konstrukci střídavého elektrokonečku a přijatelné ceně jich také pár skončilo jako názorná učební pomůcka na různých elektrotechnických fakultách. V ČR je dnes v provozu již pouze několik kusů těchto užitkových elektromobilů.

Jedna z mala BETA Electric u nás se nachází v Ostravě na Vysoké škole baňské.

Obr. 5 - Elektromobil Tatra Beta Vysoké školy baňské v Ostravě

1.3. Elektromobilita na VŠB-TU Ostrava

Snaha Vysoké školy baňské seznámit veřejnost s elektrickými či hybridními vozy přetrvává dodnes. Od roku 2004 byly realizovány čtyři prototypy závodních hybridních vozítek na vodíkový pohon s pojmenováním Hydrogen IX. Od roku 2010 se tým vědeckých pracovníků „SAZE“ pustil do nelehkého úkolu sestavit 4 prototypy užitného vozidla na elektrický či hybridní pohon. Tento směnlý cíl byl dokončen v roce 2013, a vozidla jsou pojmenována Kaipan VoltAge K0,K1,K2 a K3.

Jako vůbec první prototyp na hybridní pohon vznikl na půdě Vysoké školy baňské projekt HydrogenIX. Tento projekt byl realizován především studenty studující na Fakultě elektrotechniky a informatiky pod vedením doc. Ing. Bohumila Horáka, Ph.D.
Ve své podstatě se jednalo o výzkumný a motivační projekt stavby prototypu vozidla poháněného elektromotorem s generátorem elektrické energie využívajícím vodíkový palivový článek s polymerní protonovou membránou. Cílem řešení bylo navrhnut a realizovat dle pravidel zveřejněných společnosti Shell vozidlo, které bude mít minimální spotřebou paliva a maximální dojezd. Využití vodíku jako nosiče energie pro palivový článek ve vozidle má řadu úskalí souvisejících nejen s technologickým řešením výstroje vozidla ale také technologickou a provozní bezpečností.

HydrogenIX 1

Mechanická konstrukce zapůjčeného vozidla B&S2 TU Košice umožnila vestavbu palivového článku FYD-200/24 a soustavy palivového okruhu s dvojicí nádrží vodíku s metalhydridy.

Jak je vidět na blokovém schématu prototypu HydrogenIX 1, jež je uvedeno na obr.6, řízení toků energií ve vozidle je řízeno průmyslovým řídicím systémem PLC Simatic.

![Obr. 6 - Plánované blokové schéma el. pohonu dopr. prostředku napájeného z generátoru s palivovým článkem](image-url)

1. nádrž s hydridem kovu o objemu 150 NL vodíku, 2. redukční ventil s tlakoměrem, 3. mechanický kulový ventil, 4. elektromagnetický ventil, 5. přívod palivového plynu (vodíku) do palivového článku, 6. axiální ventilátor pro přívod reakčního a chladicího vzduchu, 7. palivový článek (Stack), 8. výstupní elektromagnetický ventil pro odvod plynů z vodíkového okruhu, 9. elmag. ventil pro proplach vodíkového okruhu dusíkem, 10. tlakový zásobník plynového dusíku, 11. vyvedení elektrické energie z palivového článku, 12. výfuk plynných reagentů do ovzduší, 13. jímka výstupních plynů v okruhu vodíku, 14. snímač koncentrace vodíku, 15. výkonový buďič elektromotoru, 16. stejnosměrný elektromotor, 17. pastorek na hřídeli elektromotoru,

Tým VŠB-TUO se v květnu roku 2005 zúčastnil s vozítkem HydrogenIX 1 soutěže Shell Eco-marathon konané ve Francouzském městě Nogaro, viz. obr. 7. Cílem soutěže je dosažení minimální spotřeby paliva dopravního prostředku v průběhu závodu, neboť maximální je vzdálenost dopravního prostředku na 1 litr paliva (Shell Formula Super 95). Soutěž se za 20 let svého působení rozrostla z původně fosilních paliv (benzín, nafta) na zdroje obnovitelné a netradiční (metanol, etanol, LPG, CNG, vodík a sluneční energie). Původně soutěž středních škol se dostala na univerzity a to dokonce i mimo Evropu. Více se o soutěži můžete dozvědět na internetových stránkách www.shell.com/eco-marathon. Mezi 217 startujícími týmy se tým VŠB-TUO umístil na 29. místě s výkonem 946 km/l paliva (Shell Formula Super 95).

Obr. 7 - Závodní vodíkové auto HydrogenIX 1

- **HydrogenIX 2**

V roce 2006 bylo původní vozidlo zcela přestavěno. Skořepinová karoserie z uhlikových vlákén umožnila změnu konceptu řízení a pohonu zadním kolem. Vozidlo je poháněno dvojicí stejnosměrných motorů Maxon. Elektrická energie je generována
Palivovým článkem Nexa společnosti Ballard s výkonem 1,2kWe. Vozidlo je vybaveno telemetrickým systémem umožňujícím on-line dohled a optimalizaci průběhu vozidla soutěžní trati. Energetický okruh vozidla je doplněn soustavou superkapacitorů umožňujících rekuperaci a/nebo optimální přepínání energetických zdrojů a rezerv. Palivový článek je provozován v konstantním minimalizovaném režimu generování elektrické energie.

Obr. 8 - Závodní automobil z roku 2006

Jako řídicí prvek byl zvolen programovatelný automat Siemens Simatic S7 224XP s rozšiřujícím modulem EM 235. Tento řídicí systém zajišťuje:

- Řízení chodu palivového článku – ovládání elmag. ventilu přívodu vodíku, ovládání elmag. ventilu odváděných spalin, ovládání ventilátoru (kompresoru) palivového článku, připojování vyrobené elektrické energie k systému elektrického pohonu, ovládání ventilátorů chladícího okruhu.
- Řízení systému elektrického pohonu – řízení proudu do motorů (PWM), řízení otáček motoru.
- Bezpečnostní systém vozidla – čidlo úniku vodíku (Jablotron GS133), sledování chodu palivového článku, měření teplot v jednotlivých bodech systému palivového článku.
- Obsluhování řídícího panelu vozidla.
- Komunikace se zobrazovacím displejem a archivace dat.

Siemens Simatic S7 224XP je malý programovatelný automat, který je určen pro řízení jednodušších aplikací. Kompaktní design, nízká cena a výkonné instrukce jsou zde kombinovány tak, aby byl celý systém nejen jednoduchý, ale i výkonný. Automat S7-200 disponuje nejen rozsáhlým instrukčním souborem, je vybaven i silnými komunikačními funkcemi. Automat Simatic S7 224XP nabízí 14 digitálních vstupů,
10 digitálních výstupů, 2 analogové vstupy a jeden výstup. Umožňuje snímat impulzní signály až do 200 kHz. Má dva pulzní výstupy do 20 kHz (umožňující rovněž PWM modulaci). Modulem EM 235 je tento automat rozšířen o 4 analogové vstupy a 1 výstup.

Celkový odběr tohoto systému je přibližně 4 W.
Jako generátor elektrické energie zde byla použita jednotka typu NEXA od společnosti Ballard Power Systems Inc.

Obr. 9 - Přehledové schéma okruhu pal. článku NEXA prototypu HIX2 včetně napáj.
napětí a řídících signálů

Jedná se o palivový článek typu PEM chlazený vzduchem. Na rozdíl od FYD-200 (použit v prvním prototypu vodíkového závodního auta) je palivový článek Nexa Power Module vybaven zvlhčovačem umístěným mezi vstupem a výstupem oksysličadla palivového článku.
Reakční plyn (okysličovadlo, vzdušný kyslík) a chladicí vzduch je hnán do palivového článku FYD-200 prostřednictvím radiálního ventilátoru o jmen. výkonu 12 W. V případě palivového článku Nexa Power Module je reakční plyn (okysličovadlo - vzdušný kyslík) hnán prostřednictvím kompresoru s BLDC motorem. Kompresor stlačuje reakční plyn na hodnotu 0,015 MPag. Při jmenovitém výkonu palivového článku činí spotřeba kompresoru 8,6 W. Filtr pro čištění reakčního plynu je fyzicky oddělen od kompresoru.
Základní parametry obou palivových článků jsou uvedeny v tabulce 1.

<table>
<thead>
<tr>
<th>Prototyp HydrogenIX1 (HIX1)</th>
<th>Prototyp HydrogenIX2 (HIX2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzikální veličina</td>
<td>Fyzikální veličina</td>
</tr>
<tr>
<td>Hodnota</td>
<td>Hodnota</td>
</tr>
<tr>
<td>Provozní teplota okolí (°C)</td>
<td>Provozní teplota okolí</td>
</tr>
<tr>
<td></td>
<td>(°C)</td>
</tr>
<tr>
<td>5 ÷ 40</td>
<td>5 ÷ 40</td>
</tr>
<tr>
<td>Provozní teplota PČ (°C)</td>
<td>Provozní teplota PČ</td>
</tr>
<tr>
<td>40 ÷ 70</td>
<td>40 ÷ 80</td>
</tr>
<tr>
<td>Parametr</td>
<td>Hodnota</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Provozní napětí vzduchu ventilátoru (V)</td>
<td>7 - 22 °C</td>
</tr>
<tr>
<td>Tlak paliva (MPag)</td>
<td>0,02 - 0,03</td>
</tr>
<tr>
<td>Tlak okysličovadla (MPag)</td>
<td>0,015</td>
</tr>
<tr>
<td>Jmenovité napětí PČ (V)</td>
<td>36,0</td>
</tr>
<tr>
<td>Jmenovitý proud PČ (A)</td>
<td>5,5</td>
</tr>
<tr>
<td>Maximální výkon PČ (W)</td>
<td>198 (170)</td>
</tr>
<tr>
<td>Napětí naprázdno PČ (V)</td>
<td>≤ 45</td>
</tr>
<tr>
<td>Uskladňovací rel. vlhkost (%)</td>
<td>> 30</td>
</tr>
<tr>
<td>Uskladňovací teplota (%)</td>
<td>5 - 30 °C</td>
</tr>
</tbody>
</table>

Při provozu palivového článku dochází ke snižování provozního napětí v důsledku hromadění plynných a mechanických nečistot v reakčních okruzích, čímž dochází ke snižování aktivní plochy katalyzátorů a elektrolytu. Odstraňování nečistot bylo v obou prototypech řešeno úplným otevřením palivového okruhu po dobu 2 s, čímž přirozeným tlakem vodíku proudícím s objemovým průtokem 2,5 l/min (omezeno hmotnostním průtokoměrem) jsou odváděny nežádoucí nečistoty z palivového okruhu. V případě prototypu HIX1 nastalo pročištění při poklesu napětí palivového článku pod hodnotu 18 V DC po dobu delší jak 5 s. V případě prototypu HIX2 nastává pročištění při poklesu napětí palivového článku pod hodnotu 32 V DC po dobu delší jak 5 s.

V okruhu paliva je v obou prototypech umístěn také membránový (mechanický) regulační ventil s rozsahem vstupního tlaku 0,0 – 2,5 MPag s regulací na výstupní tlak 0,02-0,03 MPag (HIX1) a 0,035 MPag (HIX2).

Pro zajištění maximální bezpečnosti okruhu palivového článku byl za vstupní mechanický kulový ventil prototypu HIX1 zařazen elektrický ventil Bürkert 5404 s provozním tlakem 0,0 – 5,0 MPa a napájecím napětím 24 V DC (8W), jež je dodáváno z pomocného měniče. V případě prototypu HIX2 byl tento ventil nahrazen novým ventil Bürkert 6013 s provozním tlakem do 0,0 – 2,5 MPa a napájecím napětím 12 V DC (4 W), který je umístěný přímo na vstupu regul. ventilu.

Na výstupní otvor spalin z palivového článku FYD-200 (prototypu HIX1) byl umístěn elmag. ventil Bürkert 6013 s provozním tlakem 0,0 – 1,0 MPa a napájecím napětím 12 V DC (8 W).

V případě prototypu HIX2 byl na výstupu paliva z palivového článku Nexa Power Module umístěn elmag. ventil Bürkert 6605 s provozním tlakem 0,0 – 1,0 MPa a
napájecím napětím 12 V DC (3,4 W). Jak v případě vstupního tak i výstupního elektromagnetického ventila došlo především k redukci hmotnosti a spotřeby elektrické energie. Řešitelský team získal v roce 2006 za Studii pohonu mobilního prostředku s palivovým článkem související i s vozidlem HydrogenIX Cenu Siemens za výzkum.

Obr. 10 - Časový průběh fyzikálních a elektrických veličin při zkušebních .UPAC – elektrické napětí palivového článku, IPAC – elektrický proud odebraný z palivového článku, Imot – elektrický proud tekoucí do motoru

- **HydrogenIX 3**

Jako posledním závodním vodíkovým autem bylo vytvořeno auto s novým designem zadní části závodního auta.

Toto auto se závodním týmem zúčastnilo soutěže Eco-shell maraton na německém okruhu v Lauzits v roce 2009, kde se bohužel z technických důvodů neumístilo.
Hydrogen Jeep

Vozidlo Hydrogen Jeep byl realizován skupinou SAZE v roce 2013 na zakázku pro vysokou školu technickou TU Košice.

Výše zmíněné automobily byly určeny pro specifické aplikace a nebylo možné se s nimi pohybovat na silnicích mezi ostatními motorovými vozidly a navíc dosahovaly maximálních rychlostí něco o kolo 40km/h. Proto se tým SAZE rozhodl postavit a vyvinout takové automobily, které by se přibližily standartním automobilům provozovaných na pozemních komunikacích.

Elektromobily Kaipan VoltAge

Vědecký tým z VŠB-TUO pracoval na vývoji a výzkumu technologií hybridizace elektrického pohonu elektromobilů s cílem prodloužení či zajištění nouzového dojezdu. Byly zrealizovány APU se spalovacím motorem s generátorem elektrické energie a APU realizované pomocí PEM vodíkového palivového článku. Varianta realizovaná v roce 2012 řeší energetický zdroj elektromobilu s akumulaci energie do superkapacitorů a výroby elektrické energie pomocí PEM vodíkového palivového článku. Během let 2009 až 2012 byla vyrobena a jsou v provozu čtyři vozidla. Tato vozidla jsou pojmenována jako K0, K1, K2 a K3. Každé z nich má různě dimenzované pohonné a energetické jednotky.

Roadster KAIPAN VoltAge je postaven na platformě standardního chassis KAIPAN 14 optimalizovaného pro prostorově odlišné zatížení soustavou elektropohonu.
Dvousedadlová skořepinová karoserie je vyrobena laminováním do negativní formy volitelně z materiálů sklotextilních rohoží nebo uhlíkové tkaniny s aramidovými vlákny. Karoserie v tomto provedení má hmotnost necelých 25kg.

Obr. 13 - Vozidlo Kaipan 14

Pohonná jednotka **KAIPAN VoltAge** je realizována dvojicí asynchronních vodou chlazených elektromotorů se zpětnovazebními inkrementálními snímači umístěnými před přední nápravou. Vozidlo má poháněnu přední nápravu a každé kolo zvlášť svým elektromotořem přes redukční převodovku. Elektromotory a převodové soustavy jsou vyráběny v rozpětí výkonů 3,5 – 24kW. Elektromotory a převodové soustavy jsou vyráběny společností **ISOTRA**.

Obr. 14 - Pohonná jednotka první generace (vlevo) a pohonná jednotka třetí generace (vpravo)

Elektronická část výbavy vozidla **KAIPAN VoltAge** byla vyvíjena a testována na pracovištích VŠB-TU Ostrava. Zde byly také vyvinuty a testovány měniče, elektropohon, nabíjecí systémy, nabíjecí kabely a připojovací zásuvky, nabíjecí stojany pro veřejnost a jejich infrastruktura.

Obr. 15 - Nabíjecí zástrčka, nabíjecí stanice, nabíjecí kabel
První typ elektromobilu je nazýván „K0“. Tento prototyp byl sestaven na konci roku 2009 a na počátku roku 2010 dosáhl na okruhu Hyundai v Nošovicích dojezdu 107km na jedno nabíjení. Pohonná soustava vozidla je koncipována pro příměstský provoz a vozidlo dosahuje maximální rychlosti 65km/h. Soustava 100 ks článků LiFeYPO$_4$ akumulátorů s napětím 320V a kapacitou 40Ah udává životností „dojezd“ více než 300.000km. Soustava je nabíjena ze sítě 400V/32A a doba nabíjení při nabíjecím proudu 32A nepřesáhne 2 hodiny (je možno nabíjet proudy až 120A).

Obr. 16 - Prototyp elektromobili K0 a K1 se sloupovou nabíjecí stanicí

„K1“ byl dokončen v průběhu roku 2010 a slouží pro homologační účely, exhibice na výstavách a testování ve zkušebních ústavech. Vozidlo bylo koncipováno jako adekvátní alternativa k vozidlu KAIPAN 14. Maximální rychlost 135km/h, zrychlení 0-100km/h pod 10sec a dojezd přes 250 km na jedno nabíjení instalovaných akumulátorů. Soustava LiFeYPO$_4$ akumulátorů s napětím 320V a kapacitou 100Ah je nabíjena ze sítě 400V/32A a doba nabíjení plně vybitých akumulátorů nepřesáhne 3,5 hodiny. Homologační proces byl úspěšně ukončen v roce 2013.
Obr. 17 - Testování prototypu K1 na letišti

„K2“ je určen pro vývoj a testování hybridizačních jednotek pro zlepšení dynamiky vozidla a prodloužení dojezdu elektromobilu případně nouzový dojez k nabíjecí stanici. Elektromobil má stejné technické parametry jako „K1“.

Obr. 18 - Nabíjení elektromobilu K2 u nabíjecí stanice v areálu VŠB-TUO
„K3“ je určen pro testování hybridizace vozidla s cílem zlepšit jeho dynamické vlastnosti a prodloužit dojezd vozidla na jedno nabítí akumulátorů. Technické parametry vozidla jsou obdobné provedení prototypu „K2“. Hybridizace vozidla je realizována implementací nízkoteplotního vodíkového palivového článku se zásobníkem plynného vodíku a soustavy měničů pro dobíjení trakčních zdrojů.

Výzkumný tým SAZE pracuje s vodíkovými technologiemi od roku 2004. V průběhu minulých let vznikla výzkumná laboratoř palivových článků. Realizace prototypů vozidel v provedení „K3“ je situována do závěrečné fáze řešení projektu Výzkum a vývoj pohonu elektromobilu podpořeného z veřejných prostředků agentury TIP Ministerstva průmyslu a obchodu ČR. V průběhu předcházejících etap byla vyvinuta hybridizační jednotka s generátorem elektrické energie poháněným spalovacím motorem. Toto řešení umožňuje spalovat jak benzín, tak benzín obohacený o bio složky, benzin obohacený o vodík a CNG.

Realizace vozidla, zástavba technologie a pojezdové testy jsou připraveny ve dvou fázích v průběhu roku 2012.

První fáze implementace vodíkových technologií do chassis prototypu „K3“ představuje realizaci jednotky APU s vodíkovým palivovým článkem jako prostorovou a systémovou náhradu jednotky hybridizačního generátoru elektrické energie se spalovacím motorem. Taktéž vybavené vozidlo využívá k jízdě elektrické energie akumulované v trakčním akumulátoru. V případě potřeby je tento akumulátor i za provozu dobíjen elektrickou energií z instalované jednotky APU s vodíkovým palivovým článkem.

Obr. 19 - Schéma prototypu elektromobilu K3

1a,b. Elektromotory
2a,b. Duální reduktor otáček pohonné jednotky
3. Regulátor elektropohonu
4. Trakční akumulátor elektrické energie
5. DC/DC měnič, dobíjení trakčního akumulátoru el. energie
6. Soustava palivového článku a pomocnými obvody
7. Soustava zásobníku plynného vodíku s pomocnými obvody
8. Plnící hrdlo pro plnění plynného vodíku
9. Schematické znázornění hnacích kol elektromobilu

První hybridizační implementace do vozidla „K2“ byla zahájena na konci roku 2010. Byla instalována soustava motorgenerátoru I.generace o výkonu 10kWe.
realizovaného na základě komerční elektrocentrály Heron. Soustava viz. obr.xxx umožňuje pracovat v manuálním režimu APU pro zajištění provozního a nouzového dojezdu elektromobilu. Soustava však vykazuje nevhodný poměr generovaného elektrického výkonu k vlastní hmotnosti a zastavěnému prostoru.

Obr. 20 - Finální zástavba RE I.generace do zádi K2 (2011)

V průběhu roku 2011 byla vyvinuta jednotka generátoru elektrické energie s permanentními magnety. Soustava byla laboratorně testována jako motorgenerátor II.generace pro provoz na alternativní paliva, převážně CNG. Jednotka byla sestavena a testována v laboratořích CPIT. Z analýzy testů vyplynuly závěry směřující k její inovaci.

Obr. 21 - Detail RE II.generace (2011)

V první polovině roku 2012 proběhla jednání s výrobcem spalovacích motorů s krouživým pístem o možnosti zapůjčení a testování vyvinutého generátoru elektrické energie s permanentními magnety ve spojení s touto multivalentní pohonou jednotkou.

V průběhu roku 2012 byla vyvinuta jednotka generátoru elektrické energie s nízkoteplotným vodíkovým palivovým článkem. Po obsáhlých průzkumech a jednáních byl zvolen kompromisní pro automobilní provoz ne zcela vhodný palivový článek Nedstack s výkonem 8kW. Soustava byla laboratorně testována jako motorgenerátor IV.generace pro provoz na plynný stlačený vodík o čistotě min.4.0.

Pro zástavbu hybridizační jednotky s palivovým článkem do experimentálního prototypu K3 má trakční akumulátor elektrické energie vestavěný ve vozidle optimalizované parametry a umožňuje dodat energii pro změny dynamiky jízdy vozidla. Vestavěný palivový článek pracuje po celou dobu provozu vozidla
s teoreticky konstantním zatížením. Trakční akumulátor na bázi článků LiFeYPO₄ nebo LiPol tak může být nahrazen soustavou superkapacitorů. Výsledné řešení zástavby technologií do prototypů v provedení „K3“ předpokládá budoucí realizaci obou variant.

Obr. 22 - Experimentální zástavba soustavy palivového článku NedStack 8kW jako RE III.generace a/nebo hlavní energetický zdroj pro K3 (2012/2013)

Elektromobil a jeho součásti jsou komerčně nabízeny společností Kaipan (stavební Kit Car, podvozek, karosérii a jednotlivé části atd.), elektrické systémy, vodou chlazené asynchronní a BLDC motory, uchycení na motory (ISOTRA), automobilovou elektroniku, řídící jednotu automobilu, střídače a regulátory, nabíjecí jednotky, balanční jednotky baterií a nabíjecí stanice (VŠB-TU Ostrava).

1.4. Elektromobily v zahraničí
Automobilka Citroen má ve vývoji elektromobilů z dnešních renomovaných automobilek asi nejdelší tradici. Již v roce 1939 vyrobila prototyp na základě nákladního vozu TUB.
Obr. 23 - První elektromobil postavený v USA v roce 1893

Během let 1941 - 1942 se jich postupně vyrobilo cca 100 kusů. Po spojení s automobilkou Peugeot v roce 1974, navázal nově vznikly koncern PSA na tyto zkušenosti obou firem a vytvořil samostatnou divizi zaměřenou na výrobu elektromobilů s názvem PSA Electrique. Následovalo ještě několik pokusů s vývojem elektrobusů, až byly v roce 1987 představeny dva modely, které se dostaly do malosériové výroby C15 Electrique a C25 Electrique.

Obr. 24 - Citroen TUB Electrique

Po úspěších s elektromobily C15, C25 a po té i s modelem AX, se firma PSA rozhodla ještě více investovat. Díky tomu vzniklo ve spolupráci s výrobcem baterii SAFT přibližně 5000 nových elektrických vozů, pod značkami Peugeot a Citroen dohromady.
Automobilka PSA – Peugeot Citroen Association v roce 1995 spustila patrně největší sériovou výrobu elektromobilů všech dob. Ostatní výrobci většinou nepřekročili 100 kusů ročně.

V 90. letech minulého století se elektromobily těšily poměrně velkému zájmu veřejnosti, tomu se postupně přizpůsobovali všichni velcí výrobcí alespoň jedním modelem na elektricky pohon. Ani ruská automobilka VAZ nezůstávala pozadu a vyvinula elektromobil odvozeny od svého nového nejmenšího modelu Lada 1111 electric.

Obr. 30 - Lada electric

Společnost General Motors před několika lety vyvinula elektromobil, který se již téměř vyrovnal běžným vozidlům se spalovacími motory a ve své době je dokonce výbavou a technickými parametry převyšoval. Výroba elektromobilů byla součástí projektu „Zeroemissions vehicle“ spuštěného v roce 1990 ve statě California. Jeho cílem bylo dostat na trh do roku 1998 alespoň 2 % elektromobilů z celkového počtu vozidel a do roku 2003 dokonce 10 % (Program byl závazný pro všechny velké automobilky (GM, Ford, Chrysler) v USA. Automobilky, ropný průmysl, ale po nových volbách i politická reprezentace vzkříšily silné lobovaly proti a postupně tyto zákony zlikvidovaly.). Tento ambiciózní projekt si kladl mimo jiné za cíl uvést do povědomí běžných Američanů vozidla s alternativními pohony.

Zatímco ostatní zúčastněné automobilky Honda a Toyota použily na svých modelech HONDA EV Plus a Toyota RAV4EV ověřené metody přestavby sériové karoserie na elektricky pohon, tak GM vyvinula zcela novou platformu elektromobilu postavenou ze směsi plastů, skla a hliníku.

Z důvodu vysoké pořizovací ceny ($33 995) byl zvolen systém jakéhosi leasingu na 3 roky. Podle původního příslibu GM mělo být po skončení toho období uživateli umožněno rozhodnout, zda bude chtít doplatit zbytek hotově, nebo vozidlo vrátit. Jak se však ukázalo o několik let později, byly v těchto smlouvách vytvořeny pro GM zadní vratka, která měla v případě nutnosti umožnit jejich snadné odebrání a následné stažení z provozu.

Ostatní automobilky, účastníci se tohoto projektu se stejným leasingovým plánem, nakonec ustoupily tlaku veřejnosti a některá vozidla uživatelům odprodaly. Šlo především o vozy HONDA EV Plus a Toyota RAV4 EV. Vozy RAV4 EV slouží bezproblémově již od roku 1998 jak ve stovkách exemplářů u podnikových flotil, tak soukromým majitelům, a to mnohdy s nájezdou přes dvěstětisíce km na původní akumulátorovou sadu (NiMH) v náročných klimatických podmínkách Kalifornie, Arizony apod. Právě toto male SUV je považováno za jeden z nejvymluvnějších důkazů vysoké spolehlivosti a dlouhé životnosti komponent elektrické trakce, včetně klíčových baterií.

V roce 2001 se k projektu přidala i společnost FORD se svým modelem THINK. Ty se však vyráběly v Norsku, takže se je později podařilo zachránit a odeslat zpět do Norska kde se odprodaly místním zákazníkům. Ford poté prodal i celou místní továrnou a výrobu elektromobilů ukončil. Další společnost, Mitsubishi, patří ke skupině velkých automobilek, které se již mnoho let vážně zabývají vývojem a výrobou elektromobilů. Mitsubishi na rozdíl od jiných výrobců nepoužívá ve výrobě
svých elektromobilů „osvědčené“ technologie ze spalovacích modelů, ale má na to vyvinoutou zcela novou platformu. Jsou to hlavně převodovky, poloosy a náhony, které nahrazuje unikátním řešením elektromotorů obsazených přímo v kolech vozidla (tzv. Mitsubishi In-wheel motor). Tento systém se především v poslední době ukazuje jako pohon budoucnosti, pravé tímto směrem se bude pravděpodobně ubírat další vývoj elektromobilů.

Mitsubishi In-wheel motor Electric Vehicle (MIEV)

Obr. 33 - Mitsubishi elektrický pohon pro elektromobily

Obr. 34 - Ukázka implementace motorů v kolech do vozidla

Elektromotory jsou vyrobeny společně s firmou Toyo Denki Seizo. Každý z nich má maximální výkon 50 kW. Nejvyšší rychlosti dosahuje až 180km/h a dojezd na jedno
nabiti je okolo 180 km. Celý systém je napájen ze sady Li-ion baterii umístěných v zadní části podlahy.

Mitsubishi je také pravidelným účastníkem Japonské elektromobilové rallye, která se koná každoročně na ostrově Šikoku již od roku 1998.

1.5. Elektromobily začátku nového milénia
Automobilový průmysl se pro elektromobily znovu nadchnul na sklonku tohoto století. Avšak teprve v několika posledních letech došlo ke skutečnému převratu na poli elektromobilů a nyní se dostávají do centra zájmu nejvýznamnějších výrobců aut. Jednou ze společností, které pracují na výzkumech v oblasti elektromobilů je i GE (General Electric). Ta se jejich výzkumem intenzivně zabývá posledních 40 let. V roce 2010 se práce zúročila a společnost představila nové baterie pro autobusy a nákladní vozidla.

Spolupracuje přitom s předními technologickými společnostmi, jako jsou výrobci baterií A123 Systems nebo firma Better Place, průkopník v oblasti výměny baterií. Ve státě New York buduje GE novou výrobnou baterii, nedávno také oznámila nákup velkého počtu elektromobilů pro svou flotilu. Společnost také nabízí dobíjecí stanice pro elektromobily WattStation a pokračuje i v oblasti výzkumu a vývoje elektrického pohonu pro letadla.

Z následujícího ohledněti je patrné, že se elektromobilový průmysl během několika posledních let radikálně změnil: technologie se vyrovnala představám. Výsledkem je impozantní rozvoj elektromobilů v uplynulém desetiletí:

2000

2002
GM uvědomila nájemce elektromobilů, že bude tyto vozy stahovat. Americká vláda se připojuje k žalobě výrobců aut vůči kalifornskému nařízení ohledně ZEV (vozidla s nulovými emisemi).

2003
Tesla Motors zahajuje vývoj vozu Tesla Roadster.GM oficiálně ruší program EV1.

2005
Toshiba vyrábí mobilní dobíjecí stanici, která dokáže nabít 80% baterie během 60 vteřin. Praktickému domácímu využití však bohužel brání nízké nároky na energii a přílišné zahřívání přístroje.

2006
Je uveden dokument „Kdo zabil elektromobily?“ pojednávající o „smrti“ elektromobilů.

2007
Viceprezident GM Bob Lutz prozradil magazínu Newsweek, že k vytvoření vozu Chevrolet Volt ho inspirovala Tesla Roadster. Daimler začíná v Londýně testovat malé elektrické přestavby Smart ED.

2008
Peugeot Sport uvádí Peugeot 908 HY, hybridní vůz, jehož systém umožňuje shromáždět a uchovat část kinetické energie při brzdění. Tento elektromobil se může uplatnit na vytrvalostních okruzích.

Vůz Tesla Roadster je komerčně dostupný. Doporučená prodejní cena je 110 000 USD.
Ron Dellums (starosta Oaklandu), Chudl Reed (starosta San Jose) a Gavin Newsom (starosta San Franciska) se zavázali, že se region Bay Area stane hlavním centrem elektromobilů v USA.

2009
Náklady na li-ion baterie činí dle Deutsche Bank 650 dolarů za kWh. V centru San Franciska je instalováno dobíjecí zařízení.

Rick Wagoner, odstupující CEO firmy GM uvedl v Los Angeles Times, že zrušení programu EV1 bylo největší chybou v jeho funkčním období.

BMW zahajuje testování 500 minielektromobilů prostřednictvím leasingu v New Yorku a Los Angeles.

V Japonsku začíná prodej elektrického auta na baterky, Mitsubishi iMiEV, pro fleetové zákazníky.
33

Obr. 37 - Mitsubishi iMiEV

2010
Náklady na li-ion baterie činí dle Deutsche Bank 450 dolarů za kWh.
Na trh je uveden Nissan Leaf, Chevy Volt a Peugeot iOn.

2012
Na trh byl uveden další elektromobil Tesla Model S

2013
Na trh byl oficiálně uveden další elektromobil od firmy BMW i3

2014
Že by Kaipan VoltAge???

Další zdroje

Seznam další literatury, www odkazů ap. pro zájemce o dobrovolné rozšíření znalostí popisované problematiky.

2 Baterie
Akumulátor je zařízení, která slouží pro opakované uchování elektrické energie. Principem většiny akumulátorů používaných v elektromobilech je elektrochemická reakce. Základním principem je procházející proud v elektrochemickém akumulátoru, který vyvolává vratné chemické změny, které se projevují rozdílným elektrochemickým potenciálem na elektrodách. Životnost baterií ovlivňují jak její samotné používání, tak prostředí ve kterém je používána. Akumulátor v elektromobilech určuje nejen jeho cenu ale také váhu a maximální dojezd, který se odvíjí od maximální povolené rychlosti jízdy. Jsou, však také důvodem proč dnes vidíme elektromobily na silnicích jen zřídka a jsou spíše výsadou firem než soukromým osobám.
Hlavními parametry, které jsou u baterií sledovány jsou kapacita, hmotnost, cena, rozměry, rychlost dobíjení, paměťový efekt, počet možných hloubkových dobíjecích cyklů, samovybíjení, životnost, bezpečnost a další. Akumulátory nejčastěji používané v elektromobilech jsou:
• Olověný (používaný dříve, uvádím spíše pro srovnání s ostatními)
• Nikl-cadmiový (NiCd)
• Nikl-metal hybridový (NiMH)
• Lithium-iontový
• Lithium polymerový
• lithium železo fosfátu

Obecné vlastnosti akumulátorů

Základní pojmy
Elektrochemické zdroje elektrické energie jsou zařízení, ve kterých se přímou cestou přeměňuje chemická energie aktivního materiálu v energii elektrickou. Při vybíjení zdroje nastává chemická (přesněji elektrochemická) reakce, jejíž energie se uvolňuje jako energie stejnosměrného proudu. Jelikož jde o přímou přeměnu energií bez mezistupňů jiných typů energie (tepelná, mechanická), je účinnost přeměny velmi vysoká.
Elektrochemický článek (někdy nazývaný galvanický článek) je základní jednotkou elektrochemického zdroje elektrické energie. Je to soustava tvořená kladnou a zápornou elektrodou a vhodným iontově vodivým elektrolytem, který musí být ve styku s oběma elektrodami, jež jsou přitom prostorově oddělené. V elektrochemickém článku probíhá při jeho činnosti elektrochemické reakce, tzn. chemické reakce, jichž se účastní elektrony. Tok elektronů - elektrický proud v článku může procházet dvěma směry: přirozeným od kladné elektrody k záporné (vybíjení článku) a vycuceným vlivem vnějšího napětí: od záporné elektrody ke kladné (nabíjení článku). Elektrody článku musí být odlišného charakteru: jedna musí být
oxidačním, druhá redukčním činidlem (reaktantem), přičemž to mohou být látky tuhé, kapalné i plynné. Jsou-li reaktanty kapalné či plynné, příslušné reakce probíhají na inertních elektrodách.

Baterie (elektrochemická baterie, akumulátorová baterie) - dva nebo více elektrochemických článků, které jsou vzájemně propojeny a využívány jako zdroje elektrické energie.

Aktivní hmoda je materiál, který při vybíjení článku dodává prostřednictvím chemické reakce elektrickou energii a nabíjením se vrátí do svého původního stavu.

Záporná elektroda je při vybíjení katodou a při nabíjení anodou. Aktivní hmodou je zde reaktant, který se při vybíjení článku oxiduje a uvolňuje elektrony. Jeho elektrodový potenciál se označuje \(E^\circ_A \). Příkladem je zinková elektroda: \(\text{Zn}=\text{Zn}^{2+}+2\text{e}^- \).

Kladná elektroda je při vybíjení anodou a při nabíjení katodou. Aktivní hmodou je reaktant, který při vybíjení článku uvolněné elektrony přijímá, a tudíž se redukuje. Má kladný elektrodový potenciál \(E^\circ_K \). Příkladem je např. "stříbrná" elektroda: \(\text{Ag}_2\text{O}+\text{H}_2\text{O}+2\text{e}^-=2\text{Ag}+2\text{OH}^- \).

Elektrolyt je látka v tekuté nebo pevné fázi, která obsahuje pohyblivé ionty s kladným nábojem (kationty) a ionty se záporným nábojem (anionty). Má iontovou vodivost a svou přítomností v článku umožňuje vedení proudu.

Separátor je materiál se strukturou propustnou pro ionty (zpravidla jde o perforovaný nebo pórovitý izolant), který zajišťuje izolaci mezi elektrodami různé polarity. Kromě stálosti vůči elektrolytu musí splňovat další podmínky.

Cyklus (akumulátorového článku nebo baterie) - vybíjení a po něm následující nabíjení, popř. nabíjení a po něm následující vybíjení.

Proudotvorná reakce - sumární reakce na obou elektrodách v článku.

Vedlejší reakce - reakce v článku, které nevedou ke vzniku elektrického proudu nebo vzniku aktivního materiálu elektrod.

Elektrodový potenciál (potenciál elektrody) - napětí nezatíženého článku tvořeného danou elektrodou a konvenční referenční elektrodou. Čím silnější je redukční reaktant, tím zápornější je jeho elektrodový potenciál a opačně, čím větší je oxidační účinek reaktantu, tím kladnější je jeho potenciál.

Polarizace elektrody - změna elektrodového potenciálu při průchodu proudu oproti potenciálu za bezproudového stavu. Působí energetické ztráty v pracujícím článku.

Napětí nezapozeného zdroje (naprázdno, v klidu) je rozdíl potenciálů mezi kladným pólovým vývodem a záporným pólovým vývodem zdroje, kterým neprochází proud: \(U_0=E^\circ_K-E^\circ_A \). Má vždy kladnou hodnotu.

Napětí při zatížení (\(U \)) - napětí mezi pólovými vývody článku nebo baterie v době, tedy dodává proud.

Počáteční napětí - napětí článku nebo baterie po uzavření vnějšího obvodu.
Konečné napětí - předeepsaná hodnota napětí článku nebo baterie, při které se vybíjení nebo nabíjení považuje za ukončené.

Střední napětí - střední hodnota napětí článku nebo baterie v průběhu nabíjení nebo vybíjení.

Jmenovité napětí článku nebo baterie \((U_N)\) - vhodná přibližná hodnota napětí použitá k označení článku nebo baterie (obvykle zaokrouhlená hodnota středního vybíjecího napětí).

Konečné nabíjecí napětí - napětí článku nebo baterie při nabíjení předeepsaným konstantním proudem v okamžiku, kdy jsou článek nebo baterie úplně nabité.

Plynovací napětí - napětí, při kterém se tvoří plyn v důsledku elektrolýzy elektrolytu.

Vybíjecí proud \(I_V\) - je proud, kterým je baterie vybíjena. Podle Ohmova zákona je roven podílu napětí při zatížení \(U_V\) k odporu zátěže \(R_Z\). Není charakteristikou článku, protože závisí právě na odporu zátěže.

Jmenovitý vybíjecí proud \(I_{VN}\) - je udáván výrobcem pro daný typ zdroje.

Konečný vybíjecí proud - velikost proudu na konci (na)vybíjení zdroje.

Maximálně přípustný vybíjecí proud \(I_{VMAX}\) - proud odpovídající kritické spodní hranici napětí článku (zdroje).

Zkratový proud \(I_{ZKR}\) - maximální proud dodaný zdrojem do vnějšího obvodu, jehož odpor má ve srovnání s odporem zdroje velmi malou hodnotu. (Je to vlastně podíl jmenovitého napětí a elektrického odporu zdroje.)

Doba vybíjení \(t_V\) - doba, po kterou se zdroj vybíjí ke zvolenému napětí. Závisí vybíjecím proudu. Udává se v zpravidla v hodinách.

Výkon článku \(P\) je součin vybíjecího napětí a vybíjecího proudu. Udává se v wattech.

Vnitřní odpor \(R_i\) - poměr změny napětí článku nebo baterie a odpovídající změny proudu za předeepsaných podmínek. Je dán odorem elektrolytu mezi elektrod, článku.

Kapacita zdroje \(C\) - elektrický náboj, který může za stanovených podmínkách do úplně nabité elektrochemický zdroj. Je dána množstvím elektroaktivních látek obsažených ve zdroji. V praxi se obvykle udává v ampérovodinách \(A\cdot h\), Podle Faradayových zákonů je celkový náboj při účastníci elektrochemické reakce. Platí, že z 1 molu aktivní látky lze uvolnit náboj 96 500 C, což je 26,8 A\cdot h,

Jmenovitá (nominální) kapacita zdroje \(C_N\) - hodnota elektrického náboje. Udává ji výrobce zdroje v ampérovodinách \(A\cdot h\). Např. C_{10} znamená, že při uvedené kapacitě má akumulátor poskytnout po dobu 10 h vybíjecí proud rovnající se desetinominovité (nominální) kapacitě \(I_{V} = 0,1 C_{10}\) \(A\).

Vybíjecí proud \(I_{vyb}\) - uvádí se s indexem označujícím vybíjecí dobu v hodinách. Například: \(I_{20}, I_{10}, I_{5}, I_{1}, I_{0,5}\) \(A\) pro 20 h, 10 h, 5 h, 1 h, 0,5 h vybíjení, nebo v násobku \(A\cdot h\) capacity: \(I_{vyb} = 0,05 C_N, 0,1 C_N, 0,2 C_N, 0,5 C_N, 1 C_N, 2 C_N\) \(A\).

Nabíjecí proud \(I_{nab}\) - uvádí se podobně jako vybíjecí proud, doba nabíjení se prodlužuje podle nabíjecího faktoru.
Nabíjecí faktor (nabíjecí ekvivalent) – koeficient, kterým se násobí velikost náboje odebraného při vybíjení akumulátoru, aby se dosáhlo úplného nabití akumulátoru. Například pro olověné akumulátyory je to 1,15 a pro niklkadmiové akumulátyory 1,50. To je 115 % pro olověné a 150 % pro niklkadmiové akumulátyory.

Energie zdroje - maximální energie, kterou může za předepsaných podmínek dodat plně nabitý elektrochemický zdroj. Podobně jako kapacita zdroje závisí na množství elektrochemicky aktivních látek obsažených ve zdroji. V praxi se obvykle udává ve watthodinách (W·h).

Ampérhodinová účinnost - poměr náboje odebraného při vybíjení článku nebo baterie k velikosti náboje potřebného na obnovení počátečního stavu nabití za předepsaných podmínek.

Energetická účinnost - poměr energie odebrané při vybíjení článku nebo baterie k energii potřebné na obnovení počátečního stavu nabití za předepsaných podmínek.

Specifická charakteristika - elektrický parametr vztažený na jednotku mechanického parametru baterie (na hmotnost, plochu povrchu, objem). Příkladem specifické charakteristiky je měrná energie (W·h/kg).

Vybíjecí nebo nabíjecí charakteristika článku (zdroje) - grafické znázornění závislosti napětí na odebraném nebo vloženém náboji.

Voltampérová charakteristika článku - grafické znázornění závislosti napětí na velikosti vybíjecího proudu.

Voltampérová charakteristika elektrod - grafické znázornění závislosti potenciálu elektrod na velikosti vybíjecího proudu.

Uzavřený větraný článek - akumulátorový článek s elektrodami ponořenými v kapalném elektrolytu, opatřený vikem s otvorem, kterým mohou unikat plyny. Je možné setkat se i s názvem článek se zaplavenými elektrodami.

Ventilem řízený (rekombinanční, hermetizovaný) olověný článek - je opatřen ventilům pro únik plynů při překročení definovaného vnitřního tlaku. Ventil se nesnímá a článek se nedoplňuje elektrolytem. Elektrolyt je pouze nasáknut elektrodách a separátořech nebo ztužen v gelu.

Tepelný lavinový jev - vzniká při trvalém dobíjení akumulátorů na konstantní napětí, kdy proud a teplota akumulátoru vytvářejí kumulativní vzájemně se zesilující v, jehož účinkem teplota akumulátoru dále vzrůstá a může vést až k destrukci akumulátoru.

Životnost baterie - doba užívání baterie za předepsaných podmínek. Vyjadřuje se zpravidla počtem cyklů nebo dobou, po kterou je baterie za daných provozních podmínek funkční.

2.1. Olověné akumulátyory
Olověný akumulátor je dnes nejpoužívanějším sekundárním zdrojem. Velmi rozšířené použití těchto akumulátorů je díky jejich přijatelné ceně, spolehlivosti a
dobrým výkonem. První olověný akumulátor zhotovil r. 1859 francouzský badatel Gaston Planté.
Olověné akumulátory s kapalným elektrolytem
Velmi zjednodušeně lze říci, že olověný akumulátor tvoří olověné desky (elektrody), ponořené do zředěné kyseliny sírové. Jeden článek akumulátoru je tvořen právě dvěma deskami. Články se řadí do série a vytváří akumulátorovou baterii. Chemický proces při nabíjení a vybíjení je vratný a lze ho vyjádřit chemickou rovnicí:

\[
2\text{PbSO}_4 + 2\text{H}_2\text{O} \rightarrow \text{Pb}_2\text{O}_2 + \text{Pb} + 2\text{H}_2\text{SO}_4
\]

Při nabíjení se tvoří kyselina sírová (\(\text{H}_2\text{SO}_4\)) a elektrolyt houstne. Po skončení nabíjení je na kladné elektrodě tmavohnědý oxid olovičitý (\(\text{Pb}_2\text{O}_2\)) a na záporné elektrodě je jemně rozptýlené tmavošedé olovo.
Při vybíjení je pochode opačný: elektrolyt řídne (\(\text{H}_2\text{SO}_4\) se spotřebovává) a ve vybitém stavu je na kladné elektrodě červenohnědý a na záporné elektrodě tmavošedý síran olovnatý (\(\text{PbSO}_4\)). Hustota elektrolytu se zvětšuje a je tedy spolehlivou známkou stavu akumulátoru. Druhým ukazatelem stavu akumulátoru je zvětšující se napětí při nabíjení. Pomocným ukazatelem je tzv. plynování elektrod. Z akumulátoru totiž při nabíjení unikají bubliny, jako by se elektrolyt „vařil“. Tento jev však ukazuje na to, že je užití rozbudováno olovou a že začíná elektrolyza vody. Voda se při nabíjení rozkládá na vodík a kyslík. Proto je třeba akumulátory větší množství nabíjet ve větraných místnostech, nebo na volném prostranství. Směs vodíku a kyslíku tvoří třaskavý plyn, který může při nahromadení explodovat.
Během vybíjení se tvoří na obou elektrodách špatně rozpustný síran olovnatý. Jeho měrná hmotnost je vzhledem k hmotnosti olova a olovičitého velmi malá, menší než \(10^{-8}\) \(\text{Sem}^1\). Velký význam pro funkci elektrod má jejich pěkná struktura umožňující průchod \(\text{H}_2\text{SO}_4\) do objemu elektrod. Porozita nabitéch elektrod může být až 50 % a střední průměr pórů je u kladných elektrod 1 až 2 um a u záporných elektrod 10 um. Během vybíjení porozita značně klesá, protože měrný objem síranu olovnatého je větší než měrný objem olova a oxidu olovičitého.

Typickým efektem je silné zřeďování elektrolytu během vybíjení, protože kyselina sírová se spotřebuje a zužuje se voda. V nabitéch akumulátorových článcích je koncentrace \(\text{H}_2\text{SO}_4\) 28 až 40 % (podle typu akumulátoru). Čím menší je objem elektrolytu v porovnání s množstvím aktivních elektrody, tím větší je pokles koncentrace při vybíjení; ke konci vybíjení se koncentrace pohybuje mezi 12 až 24 %. Podle toho je bezprostřední napětí nabitého akumulátoru 2,06 až 2,15 V a napětí téměř vybitého akumulátoru je 1,95 až 2,03 V. Pro daný akumulátor je pokles koncentrace kyseliny přímo úměrný prošlému náboji. Proto je měření koncentrace nebo hustoty elektrolytu vhodnou a přesnou metodou stanovení stupně nabitéh akumulátoru, což je výhodou olověného akumulátoru ve srovnání s jinými. Během vybíjení se objem elektrolytu zhruba o 1 ml na každou ampérhodinu.
Křivka napětí při nabíjení probíhá třemi pásmy - První pásmo po připojení nabíjecího proudu je charakterizováno zvětšováním napětí v souvislosti s tvorbou kyseliny v pórech olověných desek. Jde o oblast mezi napětím 1,75 až 2,2 V; hustota elektrolytu se při tom zvětšuje z 0,95 g/cm³ na 1,15 g/cm³. Druhé pásmo přeměny síranu olovnatého je ohraničeno napětím 2,2 až 2,45 V. Hustota kyseliny se zvětší až na 1,25 g/cm³. Zvětší-li se napětí článku při nabíjení až na 2,45 V, začne se kromě síranu rozkládat i voda na vodík a kyslík a akumulátor začne plynout. Rozloží-li se všechen síran, zvětší se napětí článku na 2,7 až 2,8 V. Od tohoto okamžiku se přiváděná energie spotřebovává jen k rozkladu vody, akumulátor začne intenzivně plynout a jeho napětí se již nezvětšuje.

Vnitřní odpor olověného akumulátoru je velmi malý, řádu 0,001 Ω. Závisí na hustotě a teplotě elektrolytu. Při nabíjení se vnitřní odpor akumulátoru zmenšuje, při vybíjení se zvětšuje. Výbitý akumulátor má asi dvakrát větší vnitřní odpor oproti akumulátoru nabitému. Při snížování teploty se zvětšuje vnitřní odpor akumulátoru asi o 0,4 %/°C.

Na 1 Ah je třeba asi 36 g aktivní hmoty elektrody. Kapacita akumulátoru je přímo úměrná ploše elektrod, nebo přesněji řečeno, množství činné hmoty, která se účastní vratné chemické přeměny. Protože kapacita akumulátoru závisí i na velikosti vybíjecího proudu, udává každý výrobce zaručenou minimální kapacitu akumulátoru při určitém proudu, což většinou bývá proud velikosti 1/10 kapacity akumulátoru v ampérech po dobu 10 hodin.

- **Konstrukce olověných akumulátorů s kapalným elektrolytem**
Téměř všechny typy olověných akumulátorů mají samostatné nádoby. Konstrukční materiály použité při výrobě akumulátorů musí být odolné proti dlouhodobému účinku kyseliny sírové. Jedním z mála takových materiálů je olovo a proto jsou všechny části vedoucí proud vyrobeny z olova nebo olověných slitin. Nerezová ocel se použití nedá, protože i stopy železa v roztoku ruší. Elektrodová sestává je umístěna v nádobě z izolačního materiálu (1). Krajní elektrody (2) jsou vždy záporné. V každé elektrodové skupině jsou desky přivařeny k můstkům článků (6), opatřeným proudovými vývody (9). Separately (3) jsou umístěny mezi kladnými a zápornými deskami (4). Na spodku se desky opírají o speciální hranoly (5) vyčnívající ze dna nádoby; tím se vytváří kalový prostor, kde se shromažďují aktivní hmoty spadlé z elektrod. Ve velkých staničních akumulátorách jsou desky zavěšeny na příchytkách nádoby. Vzdálenost mezi horními hranami desek a víkem (7) je minimálně 20 mm, aby se mohly kompenzovat změny hladiny elektrolytu a oddělit kapky elektrolytu při silném plynování na konci nabíjení. Víko má dva otvory pro proudové vývody a ventilační zátku (10), která umožňuje únik plynů během samovybíjení a malém přebíjení a při tom zabrání vyvření elektrolytu při nevelkých sklonech. Otvorem pro ventilační zátku se také přidává elektrolyt, určuje se jeho hladina a koncentrace a unikají jím plyny při značném přebíjení. Jednotlivé články jsou spojeny olověnými spojkami (8).

1 - nádoba, 2 - záporná elektroda, 3 - separator, 4 - kladná elektroda, 5 - opěrné hranoly, 6 - můstek, 7 - víko, 8 - mezičlánkový spoj, 9 - proudový vývod, 10 - ventilační zátku

Samovybíjení
Obě elektrody olověného akumulátoru jsou termodynamicky nestálé a v podstatě mohou reagovat s vodním roztokem za uvolňování vodíku na záporné a kyslíku na kladné elektrody. Kromě toho může oxid olovičitý reagovat chemicky s olověnou mřížkou. Samovybíjení je však během skladování čerstvě vyrobeného nabitého akumulátoru prakticky zanedbatelné a činí 2 až 3 % ztráty kapacity za měsíc.

Samovybíjení roste s rostoucí koncentrací H₂SO₄ a s rostoucí teplotou. Rychle stoupá s cyklováním akumulátoru. Je to způsobeno rozpouštěním antimuonu při korozí mřížky kladné elektrody. Antimon se vylučuje na aktivní hmotě záporné elektrody, usnadňuje vývin vodíku a podporuje tak korozí olova. V praxi se samovybíjením akumulátorů s mřížkami, jež obsahují velké množství antimuonu, ztrácí až 30 % kapacity za měsíc. Mimoto ke konci nabíjení se zvyšuje vývin vodíku, tj. kapacita akumulátoru klesá. Kromě toho samovybíjení podporují i četné látky v elektrolytu, např. stopy solí železa.

Zkraty
Při práci olověného akumulátoru se mohou vytvářet olověné můstky mezi elektrodami, které způsobují zkraty a tím také samovybíjení. Příčinami zkratů mohou být opadané částice oxidu olovičitého, které se dostanou k záporné elektrode, nakupení vysoké vrstvy kalu, deformace elektrod, miskové zborcení záporné elektrody a další jevy.

Sulfatace
Je-li olověný akumulátor skladován ve vybitém stavu, nebo je systematicky nedostatečně nabijen, dojde k velmi nežádoucímu procesu, k tzv. sulfataci elektrod (zvláště záporných). Sulfatace spočívá v postupně přeměně jemně zrnitého síranu olovnatého v tvrdou hutnou vrstvu hrubozrnného síranu. Akumulátor se sulfatovanými elektrodami se velmi obtížně nabijí, protože nabíjecím proudem se spíše vyvíjí vodík na záporné elektrode než redukuje síran olovnatý. Sulfataci se zabrání pravidelným dobíjením akumulátorů. Kapacita akumulátoru se sulfatovanými elektrodami se obnoví naplněním zředěnou kyselinou sírovou (v níž je rozpustnost síranu olovnatého větší), nebo dokonce destilovanou vodou a nabíjením akumulátoru malými proudy, např. proudy odpovídajícími \(I_N = 0,01 \). Vznikající kyselina se pravidelně vyměňuje za zředěnější nebo za vodu.

Formování elektrod
Formováním elektrod se nazývá proces vytvoření aktivní hmoty na elektrodách při výrobě. Elektrody se formují v roztoku kyseliny sírové. Výsledkem jsou vrstvy oxidu olovičitého (černé formování) a olověné houby, které se střídavě tvoří na povrchu desky.

Elektrolyt
V olověných akumulátoroch se jako elektrolyt používají roztoky dostatečně čisté kyseliny sírové. V nabitém stavu obsahuje roztok 28 až 40 % kyseliny sírové což je hustota asi 1,26 g/cm³. Při větší výchozí koncentraci může mít elektrolyt menší objem, tj. zlepší se měrné parametry. Navíc se tím sníží nebezpečí zamrzání elektrolytu na konci vybíjení při nízkých teplotách. Nadměrně zvětšení koncentrace kyseliny je však nepřípustné, protože zvětší pasivaci elektrod, samovybíjení a sulfataci a tím sníží životnost akumulátoru v cyklech. Kapacita akumulátoru závisí na
hustotě kyseliny. Při změně hustoty o 0,01 g/cm³ se změní kapacita akumulátoru o více než 3 %. Z toho vyplývá, že pokud nepečujeme o správnou hustotu kyseliny, např. doléváme-li pouze destilovanou vodu do akumulátoru, který má praskliny, a zbavujeme se tak kyseliny, urychlujeme jeho zničení.

Z vlastností elektrolytu vychází i mrazuvzdornost olověného akumulátoru. Plně nabítý akumulátor s hustotou elektrolytu nezmrzně ani při teplotách -40 °C. Výbitý akumulátor může zmrznout i při teplotě těsně pod bodem mrazu. Zmrzne-li akumulátor, dojde nejčastěji k mechanickému poškození vlivem většího objemu ledu, k poškození elektrod atd.

Obecné vybíjecí a nabíjecí charakteristiky

Typické vybíjecí křivky startovacích akumulátorů jsou zobrazeny na obrázku níže uvedeném. Zvýší-li se vybíjecí proud, značně se sníží kapacita a tudíž měrná energie. Změna kapacity je velmi patrná dokonce při změně In z 0,05 na 0,2. Na to se nesmí zapomenout při porovnávání parametrů akumulátorů, protože akumulátory různých typů mají různé předepsané způsoby vybíjení.

![Obr. 41 - Vybíjecí křivky startovacího olověného akumulátoru](image)

Na samém začátku vybíjení není napětí příliš stálé. Proto se za výchozí napětí považuje napětí po odebrání malé části kapacity, např. 10 %. Konečné vybíjecí napětí je nižší zhruba o 0,2V než napětí výchozí a činí 1,75 až 1,8 V při malých proudech a 1,2 až 1,5 V při velkých proudech.

Kapacita akumulátoru závisí na teplotě. Pro In = 0,1 a teploty nad 0 °C způsobí pokles teploty o 1 °C pokles kapacity o 0,6 až 0,7 %. Při nízkých teplotách a zejména při velkých proudech je pokles kapacity ještě prudší.
Obr. 42 - Vybíjecí charakteristika olověného akumulátoru při nízkých teplotách, $In = 0,1$

Je-li akumulátor nabíjen konstantním proudem, vzrůstá napětí z 2,3 až 2,4 V na zhruba 2,7 V poté, co by měl být už nabity; přitom začíná plynování. Silné plynování poškozuje aktivní plochu desek, tak že během plynování má být nabíjecí proud ($In < 0,05$). Často se akumuláty nabíjejí tak, že se proud mění po skocích. Zprvu je velký, aby se nabíjecí čas snížil, až po dosažení napětí 2,4 V se použijí malé proudy, aby se dokončilo nabíjení elektrod.

Olověné akumuláty se mohou nabíjet i konstantním napětím. V tomto případě je nabíjecí proud zprvu velký a postupně klesá. Při $Un = 2,5$ V je k úplnému nabíjení akumulátoru zapotřebí 16 až 20 hodin. Někdy se používají proudové omezovače na snížení počátečního velkého proudu. Pracuje-li akumulátor ve vyrovnávacím režimu, kdy se vybijí jen částečně, nabíjecí napětí se může snížit na 2,2 V, aby se zmenšilo plynování při přebíjení.

Hermeticky uzavřené bezúdržbové olověné akumulátory

Hermeticky uzavřené akumuláty jsou výsledkem dlouholetého vývoje v oblasti akumulátorů pro záložní napájení. Díky trvalé snaze o co nejmenší požadavky na údržbu akumulátorů tohoto typu jsou nyní hermeticky uzavřené akumulátory zcela bez požadavků na údržbu během celé doby životnosti. Využitím nejnovějších poznatků elektrochemie bylo dosaženo vynikajících poměrů kapacita/hmotnost spolu s možností využívat akumuláty jak v zálohovacím, tak i v cyklickém režimu.

- Základní výhody bezúdržbových akumulátorů
 - Uzavřená konstrukce

Akumulátor jsou zcela uzavřené konstrukce, díky které mohou pracovat v libovolné poloze. Ani při přepravě nehrozí únik elektrolýtu, takže riziko ekologických havárií je minimální.
• Nulové požadavky na údržbu
Akumulátory nevyžadují po celou dobu životnosti doplňování elektrolytu, protože plyny vznikající při dobíjení jsou speciální reakcí zpětně absorbovány. Nedochází tak k úniku plynů, a ani ke zvýšené korozi svorek a okolí akumulátoru.

• Jednoduchá manipulace
Konstrukce akumulátorů je zcela uzavřená, tedy i vodovzdorná. Velmi odolný je i obal akumulátorů. Na přepravu akumulátorů tedy nejsou kladeny žádné zvláštní požadavky.

• Dlouhá životnost
Za normálních pracovních podmínek (jako záložní zdroj) je přepokládaná doba životnosti podle typu akumulátoru 5 až 15 let při konečné kapacitě 80%. Při cyklickém použití se předpokládá 200 až 3000) cyklů v závislosti na hloubce, vybíjení.

• Široká oblast použití
Díky svým vlastnostem se akumulátory uplatní jako zálohovací zdroje i jako zdroj napájení pro přenosné zařízení. Akumulátory se mohou zapojovat sériově, i paralelně, což spolu s rozsáhlou nabídkou typů a kapacit umožní nalézt optimální kombinaci pro každé použití.

• Odolná konstrukce
Obal akumulátoru je vyroben z vysoce odolného nevodivého plastu ABS, který má znamenitou odolnost proti rázům, vibracím, chemikáliím a teplotě. I vnitřní konstrukce akumulátoru zaručuje vysokou odolnost proti rázům a vibracím.

• Malé rozměry
Využitím nejnovějších konstrukčních poznatků, nejlepších materiálů a důsledným sledováním kvality výroby bylo dosaženo výjimečného výstupního výkonu článku. Výsledkem tohoto soustředěného úsilí jsou vynikající poměry výkonu k objemu a hmotnosti

• Možnost hlubokého vybíjení
Nízký vnitřní odpor akumulátoru umožňuje používat je i aplikacích, kde vybíjecí proudy jsou u desetinásobky kapacity akumulátoru. Proto mohou být i malé akumulátory použity v aplikacích vyžadujících vysoké špičkové proudy.

• Dlouhá doba skladování
Velmi malé samovybíjecí proudy umožňují skladovat akumulátory až jeden rok při pokojové teplotě, bez nutnosti nabíjení. Nižší teplota dobu skladování ještě prodlužuje.

• Široký rozsah pracovních teplot
Akumulátory mohou být používány při teplotách od -60°C do +60°C. Doporučené pracovní teploty pro vybíjení jsou od -40°C do +60°C, pro dobíjení od -20°C do 50°C.

Dělení akumulátorů podle životnosti

Návrh normy IEC 896-2 rozděluje akumulátory do 4 skupin Podle navrhované životnosti. Tyto skupiny jsou následující:

- 3-5 let - standardní akumulátor

Tato skupina akumulátorů je velmi rozšířená v malých bezpečnostních systémech a podobných aplikacích jako zdroje záložního napájení. Široce se používají také jako zdroje v přenosných zařízeních.

- 5-8 let - akumulátor obecného použití

Výkonové vlastnosti této skupiny akumulátorů jsou stejné jako u akumulátorů s 10-ti letou životností. Bezpečnostní požadavky a některé testy životnosti však nejsou tak náročné jako u následující skupiny.

- 10 let - akumulátor vysokého výkonu

Obecně řečeno, životnost těchto akumulátorů je srovnatelná s akumulátory z následující skupiny s životností více než 10 let. Některé požadavky na výkon a bezpečnost nejsou tak důležité

- více než 10 let - akumulátor vysoké bezpečnosti

Tyto akumulátory jsou určeny pro použití v nejnáročnějších provozech. Splňují všechny požadavky na životnost i na bezpečnost provozu za všech okolností.

- **Konstrukce bezúdržbových hermetických akumulátorů**

 - Konstrukce s deskovými elektrodami

- Konstrukce se spirálovými elektrodami

Jedná se opět o sestavu dvou elektrod, jejichž základem je olověná nosná nosná mřížka s příměsí cínu s aktivní hmotou oxidu olovičitého a olova. Separator mezi nimi vytváří izolační vzdálenost elektrod a je to kompozit skelných vláken a textilií nasáklý elektrolytem.
Obr. 44 - Konstrukce jednoduchého článku se spirálovými elektrodami

1 - separator s absorbovaným elektrolytem
2 - elektrody
3 - kovové pouzdro článku
4 - Nosná tenká mřížka elektrod
5 - bezpečnostní přetlakový ventil
6 - vývod elektrody

Konstrukčně jsou tyto články řešeny buď v provedení samostatného článku nebo v sestavě několika článků tvořících pak monoblok. Základní elektrochemický systém je vytvořen dvěma elektrodami, stočenými do spirály a vsunut do plastikového nebo kovového pouzdra.
Obr. 45 - Konstrukce jednoduchého článku se spirálovými elektrodami

1. separator s absorbovaným elektrolytem - toto provedení baterie je klasifikováno jako suchý článek
2. elektrody - jsou vytvořeny z čistého olova, význam - dosahuje se dlouhé životnosti, 2x vyšší než klasická, nízká úroveň koroze
3. plastikové pouzdro článku
4. Nosná tenká mřížka elektrod z olova s příměsi cínu, Význam - možnost rychlého nabíjení, není požadováno proudové omezení při nabíjení konstantním napětím
 - možnost nabití během 1 hod.
 - možnost trvalého zatížení
 - nízký vnitřní odpor baterii
5. bezpečnostní přetlakový ventil - je nastaven na tlak 15 až 40 kPa (50 psi)
6. vývody elektrod jednotlivých článků a spojka

Obr. 46 - Konstrukce akumulátoru pro automobilový průmysl

Tato baterie je 12-ti voltová a je schopna dodat po dobu 30 s při teplotě -18 °C proud okolo 850 A, což je ve světovém měřítku zcela bezkonkurenční. Veškerý elektrolyt je obsažen v mikroporézní skelné vatě (v separátořech) mezi olověnými deskami. Vodík a kyslík vyvíjející se uvnitř baterie jsou automaticky rekombinovány na vodu. Životnost baterie je podle normy minimálně 12 000 startů.

Doba plného dobytí této baterie může být zkrácena až na 1 hodinu, nabíjecí proud může být až 100 A při napětí 14,4 V.
Vydrží silné vibrace podstatně déle než běžné baterie. Zatím co běžná baterie vydrží vibrace do 4 G (33 Hz) po dobu čtyř hodin a do 6 G jednu hodinu, vydrží tato baterie tytéž hodnoty 12 hodin, resp. 4 hodiny. Rozměry baterie jsou 245 x 172 x 199 a hmotnost je 17,7 kg.

- **Nabíjecí a vybíjecí charakteristiky**
 - **Hloubka vybití a vybíjecí proud**

Kapacita akumulátoru vyjádřená v Ah je celkové množství elektrické energie, které je akumulátor schopen dodat při zatížení jmenovitým proudem. Podle normy IEC 896-2 je kapacita definována pro deseti hodinové vybíjení konstantním proudem do konečného napětí 1,8V na článek. Protože však tato norma je doposud pouze návrhem, většina výrobčů používá pro stanovení jmenovité kapacity dvacetihodinový odběr konstantního proudu při teplotě 20°C a konečném napětí 1,72V na článek.

Akumulátor se tedy chová jinak pro různé zatěžovací proudy. Je důležité seznámit se s chováním akumulátoru při hlubokém vybíjení. Toto chování si objasníme na příkladech.

Akumulátor o kapacitě např. 4Ah bude vybíjen proudem rovným kapacitě, tedy 4A až do nulového napětí. Akumulátor bude plně vybit po přibližně 30min., kdy napětí bude asi 1,5V/článek. Akumulátor je však teoreticky vybit pouze z 50%. Pokud budeme nyní pokračovat ve vybíjení i pod toto napětí, tedy až do 0V, dokážeme akumulátor vybit teoreticky asi na 75%. Nikdy nedosáhneme při takto velkých proudech hodnotu 100%). Proto se akumulátor z tohoto stavu velmi snadno zotaví a je možno jej bez problému dobít. Tento způsob zatěžování nemá výrazný negativní vliv na životnost akumulátoru.

Tentýž akumulátor budeme zatěžovat proudem rovným 1/100 kapacity, tedy 40mA. Akumulátor bude plně vybit (teoreticky ze 100%) po 100 hodinách vybíjení. Konečné napětí je cca 1,75V/Č1. Pokud budeme pokračovat ve vybíjení konstantním proudem až do nulového napětí, můžeme akumulátor zatěžovat ještě více než 100 hodin. Takto vyčerpáme z akumulátoru naprosto všechnu energii, kterou je schopen dodat. **Tento typ vybíjení však může způsobit poškození akumulátoru, protože je vysoká pravděpodobnost nevratných změn na materiálu elektrod.**

Lze tedy tvrdit, že pro větší vybíjecí proudy jsou přípustná nižší konečná napětí, naopak při zatěžování velmi malými proudy je třeba pečlivě hlídat konečné napětí a odpojovat zátěž po jeho dosažení.
Vliv okolní teploty na kapacitu akumulátoru

Jak již bylo uvedeno, kapacita akumulátoru je závislá na vybíjecím proudu a také na teplotě okolí. Rozsah pracovních teplot bezúdržbových akumulátorů je neobyčejně široký. Kapacita poněkud stoupá se zvyšující se teplotou a klesá se snižující se teplotou okolí.

S teplotou sice mírně roste kapacita akumulátoru, ale také klesá životnost. Lze říci, že životnost akumulátoru klesá na polovinu pro každých 10°C až 15°C nad referenčních 20°C až 25°C. Toto je velmi důležité při návrhu umístění akumulátorů.
- **Napětí akumulátoru naprázdno**

Napětí akumulátoru naprázdno je závislé také na teplotě okolí a hlavně na zbytkové kapacitě akumulátoru. Je samozřejmé, že maximální napětí naprázdno má plně nabitý akumulátor, minimální pak akumulátor plně vybitý. Napětí naprázdno je 2,15V/článek pro plně nabitý akumulátor a 1,94V/článek pro plně vybitý.
Životnost akumulátoru

Životnost akumulátoru lze rozdělit do dvou oblastí, je to maximální doba skladování akumulátoru a následně životnost za provozu. Pokud jde o dobu skladování, je závislá zejména na teplotě okolí. Doba skladování je definována jako doba, za kterou vlivem samovybíjení poklesne kapacita na cca 60%. Pro teplotu okolí 20°C je tato doba 1 rok, pro akumulátory řady SAPHIR 18 měsíců.

Životnost akumulátoru za provozu je závislá zejména na způsobu jeho použití. Je tedy různá pro akumulátor v cyklickém provozu, kde se definuje počtem cyklů nabití vybití (viz graf závislosti kapacity akumulátoru na počtu cyklů a hloubce vybití a pro
akumulátor použitý pro zálohování napájení. V tomto režimu se životnost akumulátoru definuje jako doba, po které při trvalém dobíjení poklesne kapacita akumulátoru na 80% jmenovité hodnoty. Tato doba je samozřejmě závislá na četnosti a hloubce vybíjení, dobijecím napětí a na teplotě okolí.

Obr. 53 - Závislost kapacity akumulátoru na počtu cyklů a hloubce vybití

- Nabíjení hermetických bezúdržbových akumulátorů

Správné nabíjení je velmi důležité pro dosažení správné funkce a dlouhé životnosti akumulátorů. Spatně zvolený způsob dobíjení nebo nevhodný dobíječ může způsobit i výrazné zkrácení životnosti, nebo dokonce poškození akumulátoru.

Obecně lze říci, že pro nabíjení bezúdržbových akumulátorů je nutno připojit na svorky akumulátoru napětí větší než 2,15V/článek, (napětí nabitého akumulátoru naprázdno). Pro dosažení maximální životnosti a kapacity při rozumném dobíjecím času je doporučeno dobíjení konstantním napětím s omezením proudu.

Přebíjení akumulátoru v důsledku přílišného zvýšení nabíjecího napětí způsobí rozklad vody v elektrolytu (pokud nepostačuje rekombinace) a tím může dojít k úniku plynů bezpečnostním ventilem a dokonce i k poškození akumulátoru.

Naopak, je-li nabíjecí napětí příliš malé, proud do akumulátoru přestane těcit dříve než bude akumulátor plně nabit. Kapacita akumulátoru tak bude menší než jmenovitá. Pro nabíjení akumulátoru může být použito nabíjení konstantním proudem, konstantním napětím nebo i jejich kombinace.

Nabíjení konstantním proudem:
Tento způsob dobíjení je doporučován tam, kde je známá hloubka vybití z předcházejícího vybíjecího cyklu. Nabíjecí čas tak může být určen přesněji. Je však potřeba zajistit stabilizovaný zdroj konstantního proudu. Dále je nutné sledovat nabíjecí napětí, abychom předešli negativním důsledkům přebíjení akumulátoru.

![Diagram napětí akumulátoru při nabíjení konstantním proudem](image1)

Obr. 54 - Průběh napětí na akumulátoru při nabíjení konstantním proudem

- **Nabíjení konstantním napětím**

 Při dobíjení roste napětí a klesá nabíjecí proud. Akumulátor je plně nabit, jestliže se proud stabilizuje na velmi nízké hodnotě (např. 0,01 CA) po dobu několika hodin.

![Diagram napětí akumulátoru při nabíjení konstantním proudem](image2)
Při nabíjení konstantním napětím s omezením proudu byly zmíněny dvě varianty nabíjení. Liší se hodnotou napětí pro nabíjení. Na následujícím obrázku je nabíjecí charakteristika pro nabíjecí napětí 14,7V, používané pro nabíjení akumulátorů v cyklickém režimu, na dalším obrázku pak nabíjecí charakteristika pro napětí 13,65V, používané pro trvalé nabíjení (standby režim).

Obr. 55 - Nabíjení konstantním napětím s omezením proudu

Obr. 56 - Nabíjecí křivky při používání akumulátoru v nepřetržitém nabíjení
Zásady používání bezúdržbových akumulátorů

Hermetické akumulátory jsou navrženy pro dlouhodobé aplikace, kde musí splňovat požadavky bezúdržbového a bezproblémového provozu. Dodržováním vybraných následujících bodů při montáži a používání akumulátorů se předejde problémům během provozu.

1. Trvalé přebíjení nebo nedobíjení akumulátorů je nejhorším nepřítelem olověných akumulátorů obecně. Je třeba pravidelně kontrolovat odpojování nabíječe (v případě dobíjení konstantním proudem) a správnou hodnotu nabíjecího napětí (pro nabíjení konstantním napětím).

5. Akumulátory musí být pevně uchyceny v rámu zařízení. Pokud jsou vystaveny nárazům a vibracím, je doporučeno udělat opatření pro pohlcení rázů a vibrací (např. umístit akumulátory na pružnou podložku ap.).

6. Je také možné nabíjet akumulátory velmi rychle (během 2 až 3 hodin), není to však doporučený postup. Příliš velký nabíjecí proud může způsobit vyvíjení plynů a ztrátu elektrolytu. Dochází také k vyvíjení tepla v akumulátoru, takže může dojít ke zkrácení životnosti vlivem tepelného přetěžování.

10. Obaly akumulátorů jsou vyrobeny z plastu ABS. Mohou být poškozeny působením organických ředidel nebo lepidel. Pro dosažení dobré funkčnosti a životnosti je doporučeno udržovat pracovní teplotu mezi -20°C až +50°C.

Testování kvality u výrobce
Výrobce se snaží zajistit kvalitu akumulátorů a provádět testování hotových výrobků. Jako jsou například:

- **Test kapacity**
 Akumulátoře jsou vybíjeny proudem 0,3 CA. Po 120 minutách nepřetržitého vybíjení, nesmí být napětí zatíženého akumulátoru menší než 1,75V na článek. Zkouší se 100% výroby.

- **Test velkým zatěžovacím proudem**
 Akumulátor je zatížen proudem 2 CA (např. pro 15Ah akumulátor 30A) po dobu 5s. Po tuto dobu je snímané svorkové napětí akumulátoru, které nesmí být nižší než 1,75V/článek. Zkouší se 100% výroby.

- **Test kapacity při střední zátěži**
 Akumulátor je plně nabit a následně vybíjen proudem 0,2 CA do konečného napětí 1,7V/článek. Doba vybíjení nesmí být menší než 4h. Zkouší se podrobuje pouze část výroby (podle použité metody řízení kvality výroby).

- **Test kapacity vysokým zatížením**
 Plně nabitý akumulátor je vybíjen proudem 2 CA do konečného napětí 1,35V/článek. Doba vybíjení musí být alespoň 12 minut. Zkouší se podrobuje pouze část výroby.

- **Zkouška životnosti v závislosti na skladování**
 Plně nabité akumulátorové jsou skladovány po dobu 2 týdnů v teplotě 55°C. Poté jsou vybíjeny v pokojové teplotě proudem 0,2 CA do konečného napětí 1,7V/článek. Vybíjecí doba musí být nejméně 2 hodiny, tzn. vlivem samovybíjení nesmí kapacita poklesnout na méně než 50%. Zkouší se podrobuje pouze část výroby.

- **Zkouška zkratováním**
 Plně nabitý akumulátor je zapojen do nízkoodporové zátěže a potom zkratován. U akumulátoru je kontrolována teplota, dutiny a možnost zpráv. Zkouší se podrobuje pouze část výroby.

- **Zkouška nárazem**
 Akumulátor je 4x vržen z výšky l na tvrdou podložku. Akumulátorové jsou pak kontrolovány na prasklinu, deformace a změnu svorkového napětí. Zkouší se podrobuje pouze část výroby.

- **Zkouška odolnosti proti vibracím**
 Akumulátor se zkouší vibracemi o frekvenci 33Hz s amplitudou 2,5mm působícími v libovolné ose po dobu dvou hodin. Po ukončení zkoušky nesmí vykazovat žádné známky poškození, úniku elektrolytu, ani změny v elektrických charakteristikách. Zkouší se podrobuje pouze část výroby.

- **Zkouška přebitím**
 Plně nabitý akumulátor je přebijen proudem 0,1 CA 48 hodin. Pak je na 2 hodiny odpojen a poté vybíjen proudem 0,1 CA do konečného napětí 1,75V/článek. Doba vybíjení musí být nejméně 8,5 hodiny, tzn. že akumulátor musí být schopen vybiti z 95% kapacity bez jakýchkoliv problémů. Zkouší se podrobuje pouze část výroby.
• **Kontrola správné funkce bezpečnostních ventilů**

Plně nabité akumulátory jsou ponořeny do nádrže s minerálním olejem, kde jsou nabíjeny proudem 0,4 CA. Při takovémto přebíjení musí začít pracovat bezpečnostní ventily, což se projeví vytvářením bublin. Zkoušce se podrobuje pouze část výroby.

• **Test životnosti cyklováním**

V pokojové teplotě (25°C) jsou akumulátory vybíjeny proudem 0,2 CA do konečného napětí 1,7V/článek a nabíjeny proudem 0,25 CA při napětí 2,5V/článek dokud nepoklesne nabíjecí proud na 0,01 kapacity. Po 175 cyklech musí být kapacita akumulátoru nejméně 60% původní kapacity. Zkoušce se podrobuje pouze část výroby.

• **Zrychlená zkouška životnosti**

Při teplotě 60°C jsou akumulátory připojeny jako záložovací na zdroj napětí 2,3V/Č1. Každý měsíc je zkoušena kapacita akumulátorů. Měsíc provozu v teplotě 60°C bez teplotní kompenzace odpovídá 16 měsícům provozu v normální teplotě. Akumulátory musí pracovat při zkoušce bez problémů nejméně 4 až 5 měsíců, než klesne kapacita na 60%. Zkoušce se podrobuje pouze část výroby.

2.2. **Nikl-kadmiové akumulátory**

Nikl-kadmiové akumulátory mají několik typů konstrukčního uspořádání, které se nazývají liší optimální využitelností vybíjecích proudů a velikostí zkratových proudů:

- **Typ L** je vhodný převážně jako spolehlivý záložní zdroj elektrické energie s občasným vybíjením malými (několikahodinovými) proudy. Zkratový proud dosahuje přibližně šesti násobku jmenovité kapacitě.

- **Typ M** je vhodný pro vybíjení 30 minutové až 3hodinové nebo smíšené a zkratový proud dosahuje deseti násobku jmenovité kapacitě.

- **Typ H** je vhodný pro vybíjení velkými (startovacími) proudy po dobu kratší než 30 min. Zkratový proud dosahuje dvacetinásobku kapacitě.

- **Typ X** je vhodný pro vybíjení velmi velkými proudy po dobu kratší než 10 min. S měděnými spojkami dosahuje zkratový proud po několik minut až třicetinásobku jmenovité kapacitě.

Kromě uvedeného označení baterií podle intenzity vybíjecích proudů, můžeme se ještě setkat s označením, kterým byly v ČR dříve označovány články podle jejich použití například:

NKNU 24 = nikl-kadmiové napájecí 24 Ah, plastové (umělohmotné) článkové nádoby,
NKDU l1 = nikl-kadmiové důlní 11 Ah, plastové (umělohmotné) článkové nádoby,
NKO 118 = nikl-kadmiové osvětlovací železniční 118 Ah, kovové nádoby,
NKT 120 = nikl-kadmiové trakční 120 Ah, kovové článkové nádoby.

Světová produkce nikl-kadmiových akumulátorů dosahuje přibližně desetiný produkce olověných akumulátorů. Vyrábějí se jako uzavřené větrané (se zaplavenými elektrody mi) nebo hermetické (elektrolyt je jen nasáknut v elektrodách a separátozech).
Nevýhody Ni-Cd akumulátoru oproti olověným akumulátorům:

- Jsou dražší, mají nižší napětí článků, větší toleranci nabíjecího a konečného vybíjecího napětí, menší energetickou účinnost a větší počáteční samovybíjení.
- U akumulátorů uzavřených větraných, (se zaplavenými elektrodami), nelze zjišťovat stupeň vybití a stav plného nabíjení podle hustoty elektrolytu jako u akumulátoru olověných.
- Během provozu nikl-kadmiových akumulátorů se zaplavenými elektrodami dochází působením vzdušného oxidu uhličitého (CO₂) k reakci s hydroxidem draselným (KOH) za vzniku karbonátů (K₂CO₃). Vznikající karbonáty snižují kapacitu a zvyšující vnitřní elektrický odpor akumulátorů. Dosáhne-li množství karbonátů mezní přípustné hodnoty, je nutná výměna elektrolytu.

Výhody Ni-Cd akumulátorů oproti olověným akumulátorům:

- Delší životnost.
- Schopnost rychlého nabíjení.
- Větší odolnost proti přebíjení.
- Lépe snášejí zvláštní (střídavou složku) nabíjení.
- Mohou být dlouhodobě skladovány bez dobíjení, nebo ponechány ve vybitém stavu, aniž by se poškozovaly (zatímco u olověných akumulátorů dochází k poškození nevratnou sulfatací).
- Mohou pracovat při vhodně volené hustotě elektrolytu za podstatně nižších teplot, protože se měrná hmotnost elektrolytu nemění se stupněm jejich vybití (u olověných akumulátorů při vybíjení klesá měrná hmotnost elektrolytu a u vybitých akumulátorů může proto docházet snadno k jejich poškození zamrznutím).
- Menší pokles kapacity při nízkých teplotách.
- Větší mechanická odolnost.
- Elektrolyt nepůsobí korozivně na okolní prostředí, navíc aerosol KOH reaguje s CO₂ za vzniku K₂CO₃ a tím klesá jeho pH.
- Konstrukce Ni-Cd akumulátorů umožňuje výrobu článků již přibližně od 10 mAh.
- A další.

Základní elektrochemická reakce

Elektrolytem nikl-kadmiových akumulátorů je vodný roztok hydroxidu draselného (KOH) o hustotě 1,21 ±0,01 g/cm³ při teplotě 20 ±5°C s příslušnou 20 g hydroxidu lithného (LiOH) na 1 dm³ elektrolytu. Přísada LiOH v elektrolytu zlepšuje nabíjení a zamezuje postupnému slinutí oxidů Ni při cyklování akumulátorů, a tím prodlužuje jejich životnost. Nadbytek Li OH může ale způsobovat vznik niklátu lithného (LiNiO₂) a pokles výkonu akumulátorů.

60
Pro provoz akumulátorů za trvale nízkých teplot od -15 °C do -40 °C se doporučuje použít elektrolyt o hustotě 1,27 ± 0,01 g/cm³ (měřeno při 20 ±5 °C). Do tohoto elektrolytu není vhodné LiOH přidávat, protože by dále zmenšoval elektrickou vodivost, která je při těchto teplotách již tak malá.

Použitím vysokých koncentrací elektrolytu KOH (ale i velkých nabíjecích proudů) může docházet k bobtnání aktivních hmot kladných kapsových elektrod vznikem objemnějšího γ-NiOOH. Bobtnání kladných elektrod spěkaných nenastává, protože v neúplně zaplněných pórech elektrod mají oxidy niklu dostatečně volný prostor na rozpínání. Akumulátory se spěkanými elektrodami mohou proto pracovat s většími koncentracemi elektrolytu při horních i nízkých teplotách.

Aktivní materiály elektrod

Kladné a záporné aktivní hmoty jsou vícesložkové a každý výrobce používá vlastní recepturu. Například aktivní hmota kladných elektrod je složena z 80 % hydroxidu nikelnatého Ni(OH)₂, 20 % práškového grafitu, popř. dalších příslušných elektrolytických parametrů aktivní hmoty, jako kobalt (Co) a baryum (Ba). Aktivní hmotu záporných elektrod tvoří například 80 % hydroxidu kademnatého Cd(OH), s příslušnou 18 % jemně disperzního železa Fe (pro zabránění slinutí kadmia během cyklického provozu, 2 % grafitu, popř. dalších příměsí zlepšující fyzikální a chemické parametry záporných elektrod.

Protože kadmium je vysoce toxické, je snaha jeho množství snižovat a nahrazovat je jiným materiálem.

Konstrukce elektrod

Kladné a záporné elektrody jsou základním konstrukčním prvskem akumulátoru. Protože aktivní hmoty elektrod nejsou samonosné, uzavírají se do pouzder z jemně perforovaného ocelového pásku (plocha otevřená perforací dosahuje kolem 15 % aktivní plochy pásku), nebo se vpravují do sintrovaných (spěkaných) porézních skeletů. Pouzdra z perforovaného ocelového pásku a porézní skelety musí zajišťovat mechanickou pevnost elektrod, elektricky vodivý kontakt s aktivními hmotami, dokonalý průnik elektrolytu do aktivních hmot a minimalizovat uvolňování aktivních hmot z elektrody. Elektrody dělíme podle konstrukce:

![Obr. 58 - Konstrukce Ni-Cd elektrod 1) trubkových, 2) kapsových](image-url)
Trubkové elektrody

Trubičky se zhotovují stáčením perforovaného ocelového poniklovaného pásku do průměru 6,3 mm a vyplněním slisovanou aktivní hmotou. Proti roztáčení pásku jsou na trubičky navlečeny kovové kroužky. Elektroda se sestavuje zalisováním trubiček do rámu s proudovým praporcem.

Akumulátory s trubkovými elektrodami dosahují nejdelší životnosti. Mají ale větší vnitřní elektrický odpor, a nejsou proto vhodné pro vybíjení velkými proudy. Protože výroba trubkových elektrod je pracná, jsou tyto elektrody používány pouze jako kladné. V současné době se nahrazují elektrodami levnější konstrukce.

Kapsové elektrody

Tato konstrukce se používá pro elektrody kladné i záporné. Aktivní hmota elektrod se uzavírá mezi dva ocelové, jemně perforované pásky o tloušťce do 0,1 mm a šířce 14 až 28 mm. Počet otvorů v perforované ploše dosahuje až 400/cm² a plocha otevřená perforací činí 15 % i více. Po zalemování obou ocelových pásků, mezi kterými je aktivní hmota uzavřena, se vytvoří tzv. kapsy. Jejich zalisováním do rámů s praporci vznikají kapsové elektrody, které jsou v současné době v nikl-kadmiových akumulátozech nejrozšířenější. Zhotovují se podle použitých aktivních hmot jako kladné i záporné.

Spékané (sintrované) elektrody

Kladné elektrody se zhotovují například ze suspenze práškového niklu ve viskózním roztoku a vhodného zahušťovadla, nanášené na pás tenkého perforovaného plechu (obr. 25-1) nebo na kovovou síťku. Po vysušení dochází ke spékání v ochranné atmosféře při teplotě, kdy se zrnka niklu přitaví k perforovanému plechu (sítce) a mezi sebou navzájem tak, aby byla zachována maximální poréznost (zpravidla kolem 80 %) při zachování požadované pevnosti spékaného materiálu. Do pórů spékaných elektrod se aktivní hmota vpravuje termickým, chemickým nebo elektrochemickým procesem. Po katodické polarizaci a formování se elektrody opatří proudovými praporci.

Záporné elektrody se zhotovují podobnou technologií jako elektrody kladné. Aktivní hmota se vytváří zaplněním pórů sintrovaných elektrod kademnatou solí. Sůl kadmia se pak zpracuje na hydroxid kademnatý Cd(OH)₂ a ten se nabíjením redukuje na houbovité kadmium.
Elektrody mohou být vyráběny tenčí než 1 mm, mimořádně až 0,5 mm. Další ztenčování elektrod již neumožňuje perforovaný plech (síťka), který tvoří proudový kolektor. Akumulátyry se spékanými elektrodami jsou přibližně třikrát dražší než s elektrodami kapsovými. Výhodou je jejich extrémně malý vnitřní elektrický odpor. Ten umožňuje zatěžovat akumulátyry se spékanými elektrodami proudem 10 Cₙ (A) i vyšším při minimálním poklesu napětí.

Plastem pojené elektrody

Elektrody této konstrukce byly vyvíjeny ve snaze snížit náklady na výrobu při zachování parametrů spékaných elektrod. Aktivní hmota se nanáší na proudový kolektor z perforovaného železného plechu nebo síťky a zpevňuje se armaturou nebo skeletem z plastu vláknité struktury. To umožňuje konstruovat tenké, mírně ohebné elektrody, podobající se elektrodám spékaným. Plastem pojené elektrody se uplatňují jako záporné. Životnost plastových elektrod nedosahuje životnosti elektrod spékaných.

Obr. 60 - Konstrukce trakčního článku typu NKT s kapsovými elektrodami

Elektrody FNC

Zkratka pochází z německého názvu Faserstrukturlektroden Nickel-Cadmium, který vypovídá, že jde o elektrody s vláknitou strukturou. Kladné a záporné elektrody se zhotovují v požadované tloušťce jako netkaná textilie ze syntetického vlákna. Poniklováním povrchu vlákna se vytvoří kompaktní lehká elektroda s porézností kolem 90 %. Po nastříhání na požadovaný rozměr a opatření ocelovým praporcem se póry elektrod naplní aktivními hmotami jako u akumulátorů spékaných (póry kladné elektrody se zaplní hydroxidem nikelnatým, záporné elektrody hydroxidem kadmнатým). Pro sestavu článku se určitý počet kladných elektrod spojí svařením nebo sešroubováním v kladnou sadu a záporných elektrod v sadu zápornou. Sada
kladných a záporných elektrod se složí tak, aby se střídala vždy kladná elektroda s elektrodou zápornou. Hotové sady se opatří pólovými vývody. Protože se do aktivních hmot nepřidává grafu, netvoří se v článcích během provozu karbonáty, a proto není nutné během životnosti měnit elektrolyt. Akumulátory mají menší hmotnost na jednotku energie (kg/Wh) než akumulátory se spékanými elektrodami, mohou pracovat v rozsahu teplot -50 až +50 °C a dosahují životnosti 20 až 25 let, nebo až 3000 cyklů vybití nabití.

Obr. 61 - Sestava článku se sintrovanými elektrodami

1 - záporná elektroda,
2 - kladná elektroda,
3 - separatör,
4 - matice svorníku,
5 - kladný pólový vývod,
6 - těsnění,
7 - průchodka,
8 - krytka těsnění,
9 - podložka matice,
10 - matice + pól,
11 - víko článku,
12 - záporný pólový vývod
13 - víko ventilu,
14 - těsnění,
15 - článková nádoba,
16 - krytka elektrod
Separátory (oddělovače) elektrod

Separátory jsou určeny k elektrickému oddělení kladných elektrod od elektrod záporných. Původně se jako separátory používaly tyčinky z tvrzené pryže nebo z PVC, které se vkládaly mezi elektrody do vylikovaných drážek na elektrodách. Nevýhodou tyčinek je pracnější sestavování článků, ale i možnost vzniku zkratu mezi kladnou a zápornou elektrodou při posunutí tyčinek, nebo při nabobtnání elektrod. V současné době je proto rozšířenější použití například polypropylénových plošných separatorů ze síťoviny, nebo listů a páse mikroporézních separátorů. Separátory se vkládají mezi elektrody po sestavení kladné a záporné sady elektrod, nebo jsou jim (pásovými separátoři) elektrody obtáčeny.

Akumulátorové nádoby a nosiče

Plastové nádoby se zhotovují jako jedno-článkové, nebo jako několika-článkové monobloky, vhodné pro malé kapacity (několika jednotek až desítek ampérhodin). Plastové článkové nádoby a víka se zhotovují z polypropylenu. Protože se polypropylén obtížně lepí, víka se k nádoby přivařují. Nádoby z plastů nekorodují a izolační vlastnosti plastu zamezuji možnému vybíjení článků elektrickými svody.

Akumulátory v plastových nádobách jsou proto vhodné pro mechanicky méně náročné použití, například pro nouzové (záložní) zdroje energie. Použité plasty musí odolávat teplotě a vznícení při zvýšeném ohřevu akumulátorů.

Kovové nádoby se zhotovují svafovaním z ocelového plechu o tloušťce do 1 mm (podle hmotnosti akumulátorů). K zavěšení do nosičů se nádoby opatřují závěsnými čepy. Pro omezení koroze jsou nádoby galvanicky poniklovány. Ocelové článkové nádoby lépe odolávají mechanickému namáhání a jsou vhodné pro práci akumulátorů za extrémně nízkých teplot. Mezi jejich nevýhody patří také elektrický odevý povrch (možnost zkratu mezi články) a koroze plechu. Pro některá použití se zhotovují článkové nádoby z nekorodující oceli.

Články pro staniční účely se dodávají samostatně a sestavují se v baterii až na místě použití, na jednotážové nebo víceetážové stojany. Pro jiná použití se podle požadavků dodávají jednotlivé články, články sestavené v baterii stažením pomocí plastových pásku, nebo uložené do nosičů. Nosiče bývají dřevěné, kombinované (čela z plasty, bočnice a dna z plechu), nebo kovové (například pro plošinové elektrovozíky).

Zátky a ventily

Podobně jako u olověných akumulátorů jsou zátky ochranou proti vniknutí cizího tělesa a nečistot do článků, a tím zamezují poškození akumulátoru vznikem vnitřního zkratu a znečištěním elektrolytu, snižují odpařování vody z elektrolytu a omezují únik aerosolu elektrolytu do okolního prostředí.

Zátky bezpečnostní (antidetonační) jsou opatřeny porézní fritou, která zabrání výbuchu kyslíko-vodíkové směsi v článku následkem podnětu z vnějšího prostředí (např. zajískřením, plamenem, zdrojem s teplotou vyšší než 500 °C).

Zátky rekombinační obsahují paládiový katalyzátor, na kterém dochází ke sloučování kyslíku a vodíku vyvíjených v článících opět na vodu. Účinnost rekombinace je vyšší.
nez 95 %, a proto po dobu životnosti rekombinačních zátek odpadá během provozu článků jejich doplňování vodou nebo se intervaly doplňování vody výrazně prodlouží. Zátky pro centrální doplňování vody umožňují při poklesu hladiny elektrolytu automatické doplňování článků baterie vodou na předepsanou úroveň hladiny bez snímaní zátek. Tím zjednodušují, zrychlují a zkvalitňují údržbu baterií. Ventily zabraňují vnikání vzdušného oxidu uhličitého CO₂ do článků a tím omezují přeměnu hydroxidu draselného KOH v elektrolytu na karbonát K₂CO₃. Nejběžnější konstrukce ventilů má válcový tvar na kterém je těsnící prýžová gumička (podobně jako u ventilků do pneumatik). Současně jsou ventily pojistkou proti extrémnímu zvýšení tlaku plynů v článcích, například při přebíjení.

- **Uvedení baterie do činnosti**

Články dodané s elektrolytem a skladované po dobu nepřesahující 1 rok se po sejmutí těsnění nabíjejí konstantním proudem I = 0,2Cₜ (A) po dobu 15 h, aby se dodalo baterii 300 % jmenovité kapacity (prodloužené nabíjení).

Po uskladnění delší než 1 rok se po prvním nabití na 300 % Cₜ baterie vybije do 1,0 V/článek proudem o stejné velikosti jako při nabíjení a opět nabíjí proudem I = 0,2 Cₜ (A) po dobu 10 h, aby se jí dodalo 200 % Cₜ, (vyrovnávací nabíjení).

Následuje kontrolní cyklus, při kterém se zjišťuje, jestli všechny články dosáhly požadované kapacity. Baterii se vybije proudem 0,2 Cₜ (A) do napětí 1,0 V/čl., posléze se nabíjí stejným proudem po dobu 7,5 hodin, aby se baterii dodalo 150 % Cₜ (normální nabíjení) a po tomto cyklu se následně provede vybíjení stejným proudem. Během vybíjení je třeba kontrolovat napětí jednotlivých článků. Vybíjení je třeba ukončit, jestliže napětí nejslabších článků pokleslo na 1,0V. Dosahují-li všechny články požadované kapacity, baterii se nabíjí. Elektrolyt je třeba doplnit vodou na předepsanou úroveň hladiny, články. Po očištění, konzervaci je možné předat do provozu. Jestliže nebylo dosaženo požadované kapacity (například vlivem pozvolnějšího náběhu), lze poslední cyklus opakovat.

Nabíjení

Články se zátkami starší konstrukce (s pryžovým těsněním) je nutné ponechat otevřené (zátky položené na otvorech), články se zátkami nové konstrukce s keramickou fritou se během nabíjení nechávají uzavřené.

Protože při nabíjení dochází k vzestupu teploty elektrolytu, je třeba dbát, aby teplota nepřesáhla +40 °C, buď snížením nabíjecího proudu na polovinu s prodloužením nabíjecí doby, nebo přerušením nabíjení a pokračováním v nabíjení po poklesu teploty na +35°C. V obou případech musíme akumulátoru celkem dodat požadovaný počet ampérhodin. Pro Ni-Cd akumulátory se doporučují dále uvedené druhy nabíjení:

- **Prodloužené nabíjení** proudem 0,2 Cₜ (A) po dobu 15 h. Baterii se tímto nabíjením dodá 300 % jmenovité kapacity. Prodloužené nabíjení se používá například při "I" v rum nabíjení nových akumulátorů uváděných do provozu, po ukončení uskladnění již použitých akumulátorů, nebo k obnovení kapacity akumulátorů halboce vybitých a nedostatečně během provozu nabíjených. Pokud nabíjecí zdroj neumožňuje nabíjení konstantním proudem (nabíječ pracuje například v nabíjecí charakteristice IU),
nabíjíme baterii v charakteristice I proudem 0,2 C_N (A) do vzestupu napětí na 1,65V/článek. Po dosažení napětí 1,65 V/článek pokračujeme v nabíjení charakteristikou U. Celková doba nabíjení uvedenou charakteristikou na 300 % C_N trvá přibližně 30 h.

Vyrovňovací nabíjení je nabíjení proudem 0,2 C_N po dobu 10 hodin. Tímto nabíjením se dodá baterii 200 % jmenovité kapacity. Nabíjet je třeba vždy po 10 až 12 cyklech normálního nabíjení, aby se udržovala plná aktivita elektrod a vyrovnaly se vznikající rozdíly v kapacitě jednotlivých článků baterie. Při nabíjecí charakteristice IU nabíjíme v první fázi proudem I=0,2 C_N (A) do vzestupu napětí baterie na 1,65 V/článek a pak v charakteristice $U=1,65$ V/článek po celkovou dobu 20 hodin.

Normální nabíjení se používá pro běžné nabíjení akumulátorů pracujících v bateriovém (cyklickém) provozu. Provádí se proudem 0,2 C_N (A) po dobu 7,5 hodiny. Nabíjením se dodá baterii 150 % C_N. Při nabíjení proudem 0,1 C_N (A) se doba nabíjení prodlouží na 15 hodin. Příklad průběhu napětí Ni-Cd akumulátorů nabíjených v charakteristice I (konstantním proudem) je patrný z následujícího obrázku.

![Obr. 62 - Příklad průběhu napětí Ni-Cd akumulátorů při normálním nabíjení na 150% CN o teplotě 20+/-°C (1-konstantní proud I=0,2Cn(A), 2- konstantní proud I=0,1Cn(A))](image)

![Obr. 63 - Příklad časového průběhu nabíjení Ni-Cd akumulátorů charakteristikou IU 1. nabíjení na konstantní napětí 1.45 až 1,55V/čl.]()}
2. nabíjení na konstantní napětí 1,60V/čl.,
3. nabíjení na konstantní napětí 1,65V/čl.

Vybíjení

Může probíhat bez přerušení nebo přerušovaně. Při neúplném vybíjení během bateriového provozu (nabíjení, vybíjení) dochází následkem paměťového efektu k poklesu kapacity Ni-Cd akumulátorů, prodlužuje se ale jejich životnost. Každý typ akumulátoru má vlastní vybíjecí křivky a zpravidla se uvádí i vybíjecí křivky pro různé provozní teploty.

Podle vybíjecích křivek se dá posoudit, které typy akumulátorů jsou vhodné pro dlouhodobé vybíjení nízkými proudy, pro střední vybíjecí doby, nebo pro krátkodobé vybíjení vysokými proudy.

Obr. 64 - Vybíjecí charakteristika akumulátorů KPM při 20°C

1. 0,1C5
2. 0,2 C5
3. 0,5 C5
4. 1 C5
5. 2(A) C5
Výhodou Ni-Cd akumulátorů je možnost ponechat akumulátory i dlouhodobě ve vybitém stavu, aniž by se poškozovaly (u výbitých olověných akumulátorů dochází k poškození nevratnou sulfatací).

2.3. Nikl-metal hybridy

Patří do kategorie akumulátorů moderních konstrukcí. Aktivním materiálem záporné elektrody jsou slitiny kovů (TiFe, ZnMn$_2$, LaNi$_5$, apod.), které jsou při nabíjení článku schopny vytvářet hybridy, tedy vázat na sebe vodík.

Vodík, vznikající při nabíjení, se váže na kov, a tím v článku vznikne malý přetlak plynu. Měrná kapacita NiMH článku v těsném válcovém pouzdu je až 300 Wh/dm3 a 100 Wh/kg. Životnost akumulátorů dosahuje okolo 500 cyklů při provozování ve vhodných podmínkách. Ale vhodné podmínky nebývají pro nás v praxi většinou dosažitelné. Vezměte si například baterii vybíjenou v teplotním období v letních měsících při nabíjení v teplotních čidlech meteorologických stanic. V těchto podmínkách se může skutečná životnost snížit i na méně než 50 cyklů.

Teplota je důležitým faktorem i při nabíjení, jelikož ovlivňuje množství energie, kterou je článek schopen pojmout. Ideální nabíjecí teplota by se měla pohybovat v rozsahu 10—30 °C. Při okolní teplotě okolo nuly nedochází v článku k chemickým reakcím, které by mohly pohlubovat volné plyny a může dojít k destruktivní fázi. Taktéž nabíjení nad 40 °C je již velmi neefektivní, článek již není schopen akumulovat elektrickou energii. Při vlastním nabíjení je dále důležité, aby nabíjecí proud nepřesáhl maximální povolenou hodnotu udávanou výrobcem konkrétního článku a doba nabíjení nepřesáhla povolenou dobu pro daný nabíjecí proud. Tyto parametry obvykle za nás „ohlídá“ kvalitnější nabíječka.
lze jej využít i pro indikaci stavu nabité. Jednotlivé křivky představují závislost napětí na stavu nabité a teplotě okolí při malém nabíjecím proudu.

Na křivce naměřená např. při teplotě 45 °C a vyšší je popisovaný prudký nárůst napájení již zcela zanedbatelný a nemůžeme zde použít metodu ukončení nabíjení založenou na detekci tohoto nárůstu.

Je-li článek nabíjen malým proudem po dobu např. 10 hodin a před začátkem nabíjecího procesu nebyl úplně vybit, může se dostavit tzv. paměťový efekt. Takový článek, ačkoliv je plně nabit, při zátěži selže. Příčinou jsou usazeniny kovových krystalů na záporné elektrodě. Snižuje se kapacita, nízká odpor nárůst a článek při zátěži neudrží napětí. Akumulátor je se zátěži funkční jen pár minut. Pro záchranu článku je nutné zcela vybit, nejlépe pomocí řízené nabíječky, poté jej opakovaným vybíjením a nabíjením můžeme regenerovat.

Ideálním stavem pro prevenci paměťového efektu je tedy občasné úplné vybití, případně občasné dobíjení vyšším proudem za použití inteligentní nabíječky.

Ideálním stavem pro nabitou baterii není vyjmutí z nabíječky a skladování v šuplíku, kde dochází k postupnému samovybíjení, ale tzv. udržovací nabíjení. V režimu udržovacího nabíjení je článek neustále napájen 1/40 až 1/20 nabíjecího proudu. Tím kompenzuje samovybíjené nabíjení a udržujeme akumulátor stále plně nabity.

Kdy tedy ukončit nabíjení? Ideální je, pokud naše nabíječka sama rozpozná, že baterie je již nabita, a automaticky přepne do stavu udržovacího nabíjení. Nejrozšířenější metodou ukončení nabíjení je sledování záporné změny napětí, v literatuře nazývanou delta U. Při nabíjení akumulátoru sledujeme maximální hodnotu napětí na akumulátoru. Jakmile dojde k poklesu maximálního napětí na akumulátoru o předem zvolenou hodnotu, zahájíme proces udržovacího nabíjení. Tato předem zvolená hodnota NiMH článku je 5 mV.

Úplné vybití NiMH akumulátoru může nastat při dlouhodobém skladování akumulátoru bez pravidelného dobíjení, při skladování akumulátoru bez elektrolytu nebo při nekontrolovaném úplném vybití do zátěže. Při krátkodobě vybitém článku s elektrolytem je možno obnovit náboj standardním nabíjením proudem 0.1 až 0.2 Ca (tato hodnota se udává v ampérech a číslově odpovídá jmenovité kapacitě akumulátoru v ampérhodinách).

Po nabití můžeme doporučit následující vybití na konečné napětí článků 1.0 V na článek a opětovně standardní nabítí. U dlouhodobé vybitých článků může nastat degradace elektrolytu a následné znehodnocení.
2.4. Lithium iontové akumulátory

V praxi se dnes můžete setkat se dvěma typy Li-ion akumulátorů, které se liší provedením záporné elektrody (u akumulátorů je to anoda). V obou případech je to uhlík, v prvním jako „coke“ a v druhém ve formě grafitu. Tyto akumulátorů se liší tvarem vybíjecích křivek a nabíjecím napětím a napětím, při kterém je třeba ukončit vybíjení. Pro úplnost je třeba uvést, že se vyrábějí i akumulátory s grafitovou anodou, které mají díky upravené technologii výroby nabíjecí napětí 4,2 V a vybíjecí 2,5 V. Ve vývoji jsou lithium-polymerové akumulátorů, umožňující dosáhnout ještě větší energetické hustoty v článku. Tyto články však zatím rychle degradují a umožňují jen malý počet nabíjecích cyklů.

Akumulátorů s "coke" anodou používají mikrokrystalickou formu uhlíku, která se dříve označovala také jako "amorfní uhlík". Je shodná s grafitem, ale na rozdíl od něj má jen nepatrné a neorientované krystaly.

<table>
<thead>
<tr>
<th>typ</th>
<th>Max. nabíjecí napětí (V)</th>
<th>Konečné vybíjecí napětí (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke</td>
<td>4,2</td>
<td>2,5</td>
</tr>
<tr>
<td>Graphite</td>
<td>4,1</td>
<td>3,0</td>
</tr>
</tbody>
</table>

Tab. 2. Typy Li-ion akumulátorů
Akumuláty s "coke" anodou používají mikrokristalickou formu uhlíku, která se dříve označovala také jako "amorfní uhlík". Je shodná s grafitem, ale na rozdíl od něj má jen nepatrné a neorientované krystaly.

S Li-ion akumulátory se setkáte buď ve formě jednotlivých článků, nebo tzv. "akupaků" pro mobilní přístroje. Jednotlivé články používají nejčastěji modeláři ve špičkových modelech. Akupaky pak naleznete v mobilních telefonech, přenosných počítačích a videokamerách. Akupaky bývají vybaveny ochranným obvodem, který zamezuje zničení, případně i explozi článku při nesprávné manipulaci nebo závadě napájeného přístroje či nabíječky. Ochranný obvod zpravidla hlídá minimální a maximální napětí článku, případně i maximální vybíjecí a nabíjecí proud. Pokud je překročen maximální proud nebo povolený rozsah napětí, obvod článek odpojí.

Akumulátory Li-ion se nabíjejí standardně ze zdroje napětí s omezením nabíjecího proudu. Podobným způsobem se nabíjejí také bezúdržbové olověné akumulátoře (SLA) a alkalické akumulátoře (RAM). Při nabíjení Li-ion je třeba velmi přesně dodržet konečné nabíjecí napětí, mnohem přesněji, než je tomu u akumulátorů SLA a RAM. Uvádí se, že již malé překročení nabíjecího napětí podstatně zkrátí dobu života článku, při napětí menším se článek nenabije na plnou kapacitu. Konečné nabíjecí napětí je podle typu článku 4,1 nebo 4,2 V, a je třeba je dodržet s přesností ±1 %.

Naopak nabíjecí proud není třeba přesně dodržet, bude-li menší, bude nabíjení jen trvat déle. Maximální nabíjecí proud uvádí výrobci od 0,1 do 2 C. Jednotkou C se myslí jmenovitá kapacita článku. Bude-li mít článek kapacitu např. 900 mAh a povolený nabíjecí proud 0,5 C, můžeme jej nabíjet proudem až 450 mA.

Obr. 67 - Průběh napětí a proudu při nabíjení akumulátoru Li-ion

Typický průběh nabíjení článku Li-ion je vyobrazen na výše uvedeném obrázku a platí pro nabíjení proudem 1 C. Z obrázku je patrné, že článek se nabíjí velmi rychle. V první fázi se článek nabíjí proudem tak dlouho, dokud napětí na článku nedosáhne

V druhé fázi se článek nabijí konstabilním napětím a nabíjecí proud se postupně zmenšuje. Článek považujeme za nabitý, pokud nabíjecí proud poklesne na zlomek původního nabíjecího proudu, většinou asi 0,05C. Nabíjecí proud se postupně zmenší až k nule. To je výhoda, neboť nehrozí přetížení článku. Dobu nabíjení nemusíme hlídat a článek může být v nabíječce libovolně dlouho. Nabíječka může rovněž bez jakéhokoli nastavování nabijet články s různou kapacitou, stačí zajistit, aby ani u článku s nejmenší kapacitou nebyl překročen maximální nabíjecí proud. Články s větší kapacitou se budou nabíjet déle.

Pro úplnost je třeba se zmínit o nabíjení nových a hluboce vybitých článků. Tyto články se nabíjejí velmi pomalu proudem řádu jednotek miliampér, tak dlouho, dokud jejich napětí nedosáhne 2,7 až 3 V. Takové formování článku trvá velmi dlouho, řadově hodiny. Články nelze rovněž nemusíme hlídat a článek může být v nabíječce libovolně dlouho. Nabíječka může rovněž bez jakéhokoli nastavování nabijet články s různou kapacitou, stačí zajistit, aby ani u článku s nejmenší kapacitou nebyl překročen maximální nabíjecí proud. Články s větší kapacitou se budou nabíjet déle.

Pro úplnost je třeba se zmínit o nabíjení nových a hluboce vybitých článků. Tyto články se nabíjejí velmi pomalu proudem řádu jednotek miliampér, tak dlouho, dokud jejich napětí nedosáhne 2,7 až 3 V. Takové formování článku trvá velmi dlouho, řadově hodiny. Články nelze rovněž nemusíme hlídat a článek může být v nabíječce libovolně dlouho. Nabíječka může rovněž bez jakéhokoli nastavování nabijet články s různou kapacitou, stačí zajistit, aby ani u článku s nejmenší kapacitou nebyl překročen maximální nabíjecí proud. Články s větší kapacitou se budou nabíjet déle.

2.5. Lithium polymerové akumulátory

Lithium polymerové (LiPol) akumulátory představují nejmodernější zdroj energie pro poohon modelů. Vynikají především nízkou hmotností a vysokou energetickou hustotou – tj. velikostí uloženého elektrického náboje vztaženého na jednotku hmotnosti.

LiPol akumulátorové paky jsou většinou složeny z pečlivě vybíraných článků se stejnými fyzikálními vlastnostmi. Tak je zajištěna vysoká kvalita akumulátorů. I přes pečlivé sadování článků může časem dojít k tomu, že napětí jednotlivých článků se bude rozdílné. Z tohoto důvodu jsou vyvězeny vodiče z jednotlivých akumulátorů do tzv. servisního konektoru, na který se připojuje balancér vyrovňávající aktivně, či pouze pasivně omezující maximální napětí jednotlivých článků při nabíjení. Důsledně doporučujeme nabíjet LiPol akumulátory současně s použitím vyrovnávacího balančéru.

Jmenovité napětí jednoho LiPol článku je obvykle 3,7 V. Při nabíjení nesmí v žádném případě dojít k překročení napětí článku nad hodnotu 4,2V / 1 článek – hrozí exploze akumulátoru a vznik požáru. Při nabíjení nemusíme hlídat a článek LiPol poklesnout pod hodnotu 3,0V / 1 článek. Překročení udaných maximálních nebo minimálních hodnot napětí musí být větší k trvalému poškození akumulátoru. Pro nabíjení / vybíjení LiPol akumulátorů je dovoleno používat pouze nabíječe speciálně určené pro nabíjení LiPol akumulátorů. LiPol akumulátorové paky jsou většinou složeny z pečlivě vybíraných článků se stejnými fyzikálními vlastnostmi. Tak je zajištěna vysoká kvalita akumulátorů. I přes pečlivé sadování článků může časem dojít k tomu, že napětí jednotlivých článků se bude rozdílné. Z tohoto důvodu jsou vyvězeny vodiče z jednotlivých akumulátorů do tzv. servisního konektoru, na který se připojuje balancér vyrovňávající aktivně, či pouze pasivně omezující maximální napětí jednotlivých článků při nabíjení. Důsledně doporučujeme nabíjet LiPol akumulátory současně s použitím vyrovnávacího balančéru.

Jmenovité napětí jednoho LiPol článku je obvykle 3,7 V. Při nabíjení nesmí v žádném případě dojít k překročení napětí článku nad hodnotu 4,2V / 1 článek – hrozí exploze akumulátoru a vznik požáru. Při nabíjení nemusíme hlídat a článek LiPol poklesnout pod hodnotu 3,0V / 1 článek. Překročení udaných maximálních nebo minimálních hodnot napětí může vést k trvalému poškození akumulátoru. Pro nabíjení / vybíjení LiPol akumulátorů je dovoleno používat pouze nabíječe speciálně určené pro nabíjení LiPol akumulátorů. LiPol akumulátorové paky jsou většinou složeny z pečlivě vybíraných článků se stejnými fyzikálními vlastnostmi. Tak je zajištěna vysoká kvalita akumulátorů. I přes pečlivé sadování článků může časem dojít k tomu, že napětí jednotlivých článků se bude rozdílné. Z tohoto důvodu jsou vyvězeny vodiče z jednotlivých akumulátorů do tzv. servisního konektoru, na který se připojuje balancér vyrovňávající aktivně, či pouze pasivně omezující maximální napětí jednotlivých článků při nabíjení. Důsledně doporučujeme nabíjet LiPol akumulátory současně s použitím vyrovnávacího balančéru.
Nedodržení správného postupu při nabíjení, stejně třeba jako zkrat článku, vede k přehřátí článku a jeho poškození vyvíjejícími se plyny elektrolytu. Pokud teplota uvnitř článku překročí hodnotu cca 150°C, dojde k nastartování exotermní chemické reakce (reakce doprovázená vývojem tepla), která může samovolně pokračovat i při odpojení nabíječe. V důsledku toho může dojít k explozi článku a k vzniku požáru, neboť vystříknutá náplň článku se na vzduchu sama vzníti. Ačkoliv jsou LiPol akumulátory při správném zacházení zcela bezpečné, toto nebezpečí nepodceňujte.

Proti NiCd a NiMH bateriím nevyžadují LiPol akumulátory úvodní formování. U LiPol akumulátorů se nesetkáte s pojmem paměťový efekt tak jako u NiCd či NiMH baterií. Z toho důvodu není nutné LiPol akumuláty před dalším nabíjením vybíjet.

Uchovávání akumulátorů

LiPol akumulátory nikdy nenechávejte v modelu, pokud jej právě neprovozujete. Skladujte je v uzavřeném Safe Paku, nebo uzavřeném kontejneru z nehořlavého materiálu. LiPol akumulátory nikdy neukládejte na přímém slunečním světle nebo v prostředí, jehož teplota přesahuje 50°C. Akumulátory je třeba skladovat v prostředí s nízkou vlhkostí, bez korozivních plynů a v bezpečné vzdálenosti od hořlavých materiálů při teplotách v rozsahu –10 až + 40°C.

Vysoké napětí článků během skladování urychluje degradaci článků snižující kapacitu. Doporučuje se akumuláty skladovat v částečně nabitém stavu (asi na 3,8 V / článek). Dlouhodobé skladování může vést k hlubokému vybití článků v důsledku samovybíjení. Pokud akumuláty skladujete po dobu delší než jeden rok, nejméně jednou je v průběhu této doby nabíjejte na úroveň 3,8 V / článek.

Nabíjení

Pro nabíjení vždy důsledně používejte pouze nabíječe určené pro LiPol akumulátory. Takový nabíječ musí být vybaven programem bezpečně zajišťující ukončení nabíjení při dosažení maximálního povoleného napětí 4,2V / 1 článek a možností nastavit výši nabíjecí proud. U LiPol akumulátorů BIONIC nesmí hodnota nabíjecího napětí překročit úroveň 1C – to znamená, že hodnota nabíjecího proudu akumulátoru s kapacitou 2000mAh může být maximálně 2000mA (2A). Výjimkou je použití rychlých nabíječů, které mají kapacitu 2C. V žádném případě nepoužívejte režim nabíjení s automatickým nastavením nabíjecích parametrů ani jakékoliv programy, které nejsou určeny pro nabíjení LiPol akumulátorů. Nabíjení jiným než určeným způsobem může vést ke zničení akumulátorů, hrozí nebezpečí výbuchu a požáru a případné zranění osob.

Akumulátory BIONIC jsou standardně vybaveny servisním konektorem, který slouží k připojení balanceru při nabíjení. Doporučujeme používat balancer při každém nabíjení, každý desátý cyklus by měl být proveden se sníženým nabíjecím proudem (max. 0,5C) pro dokonalé vyrovnání napětí na jednotlivých článcích. Stejně tak je třeba zařadit nejméně jeden pomalý nabíjecí cyklus v případě, že zaznamenáte, že jednotlivé články před nabíjením vykazují rozdíl v napětí vyšší než 0,15 V.

Vybíjení
Články svojí kvalitou patří k nejlepším LiPol akumulátorům na trhu. Proudové zatížení článků dosahuje až 20C – to znamená dvacetinásobek jmenovité kapacity. Při vybíjení nesmí hodnota napětí článku LiPol poklesnout pod hodnotu 3,0V / 1 článek. Překročení udané minimální hodnoty napětí může vést k trvalému poškození akumulátoru. Pro vybíjení LiPol akumulátorů je dovoleno používat pouze nabíječe / vybíječe speciálně určené pro vybíjení LiPol akumulátorů. LiPol akumulátory připojujte pouze k regulátorům podporujícím možnost použití LiPol článků - zabrání vybití LiPol článků pod hranici 3,0V. Prostudujte si návod k požití regulátoru.

Vybíjecí proudy mají vliv na životnost článků a při vybíjení vyššími než dovolenými proudy dochází k snížení kapacity článků. Vzhledem k tomu, že výrobce ani dovozce nemají žádnou kontrolu nad tím, jak uživatel dodržuje správný postup při nabíjení a vybíjení, nemohou garantovat počet cyklů, kterých baterie během své životnosti dosáhně.

Doporučujeme uživatelům změřit odběry proudu z LiPol akumulátorů při maximálním výkonu pohonu jednotky. V žádném případě nemají překročení jmenovitých hodnot. Doporučujeme používat vyššího počtu sériově zapojených článků, které Vám umožní dosáhnout stejně výkon pohonu jednotce při současně nižším proudovém odběru.

Zásady bezpečného použití LiPol akumulátorů

- Důsledně se vyvarujte zkratu silových vodičů, nebo vodičů servisního konektoru. Pozor na možnost zkratu při převozu akumulátorů v důsledku dotyku s kovovými předměty.
- LiPol akumulátory nepatří do rukou dětem ani osobám, které si nepřečetly nebo nejsou ochotny dodržovat tento návod a zásady k použití.
- Chráněte články před mechanickým poškozením – vytržení elektrod, propíchnutí. Mohlo by přitom dojít k vnitřnímu zkratu s výše popsanými následky (exploze, požár).
- Nepropichujte ani „nafouknuté“ články – nafouknutí je známkou vnitřního poškození a články by se mohli po propíchnutí vznést a způsobit požár.
- Při nabíjení se nejprve dvakrát ujistěte, že jste správně nastavili parametry nabíjení (počet článků, nabíjecí proud). Nepoužívejte programy s automatickým nastavením parametrů.
- Nabíjený akumulátor umístěte na nehořlavou podložku. V blízkosti se nesmějí nacházet hořlavé předměty nebo kapaliny. Akumulátory nenabíjejte uvnitř automobilu.
- Při nabíjení neponechávejte akumulátor bez dozoru.
- Pravidelně kontrolujte napětí na jednotlivých článkách sady zvláště v paralelním zapojení, nemělo by se lišit o více než 0,01V. Doporučujeme nabíjet s kvalitním balancérem.
- K regulátoru modelu připojujte články vždy nabité na maximální kapacitu. Regulátor v případě většího počtu článků není schopen správně rozpoznat počet článků a může dojít k hlubokému vybití a k trvalému poškození článků.
- Jakmile rozpoznáte pokles výkonu pohonu jednotky – ihned přistaňte. Vybíjecí křivka je v poslední fázi velmi strmá a hrozí rychlé odpojení motoru.
regulátorem. Navíc dochází v poslední fázi vybíjení z fyzikální podstaty k většímu rozcházení napětí článků.

- Po přistání ihned odpojte pohonný akumulátor od regulátoru. I ve vypnutém stavu regulátor odebrárá proud, který by při dlouhodobém připojení způsobil hluboké vybití akumulátoru.
- Akumulátoru neponechávejte připojené ani k nabíječům, vybíječům nebo balancerům - po ukončení procesu sahu ihned odpojte.
- Po havárii vyjměte články z modelu, odložte je na bezpečné místo a po dobu nejméně 30 minut z bezpečného odstupu sledujte. Zvětšování objemu nebo zahřívání je známkou vnitřního poškození.
- Před definitivní likvidací článek zcela vybijte ponořením na 12 hodin do nádoby.

2.6. Lithium-železo-fosfátové baterie

Lithium-železo-fosfátový (LiFePO4) akumulátor (také označovaný „LFP“) je druh akumulátoru, konkrétně lithium-iontového, který používá jako katodové materiálu LiFePO4.

LiFePO4 objevil John Goodenough z výzkumné skupiny na Texaské univerzitě v roce 1996 jako vhodný katodový materiál pro dobíjecí lithiové baterie. Brzy vzbudil zájem trhu vzhledem k nízké výrobní ceně, netoxicitě, dostupnosti železa, vynikající tepelné stabilitě, bezpečnostním vlastnostem, dobrému elektrochemickému výkonu a vysoké specifické kapacitě (170 mAh/g).

Hlavní bariéra pro širší komerční využití byla nízká vnitřní vodivost. Tento problém byl vyřešen mimo jiné (snižením velikosti částic) patažením LiFePO4 částic vodivými materiály jako např. uhlíkem a částečně využitím takzvaných dopovaných polovodičů (extrémně čistých). Konkrétně se používají postupy dopování a nauhličování vyvinuté panem Yet-Ming Chiang a jeho spolupracovníky na MIT za použití kationtů materiálů jako hliníku, niobia a zirkonia. Později se ukázalo, že většiny zlepšení vodivosti se dosáhlo přítomností nanoskopických jader odvozených z organického uhlíku. Uvedené materiály jsou vyráběny v podniku A123Systems a jsou dále zpracovávány společnostmi jako Black and Decker, DeWalt, General Motors, Chevrolet Volt, Daimler AG, Cessna a BAE Systems.

Výhody a nevýhody

V LiFePO4 bateriích se využívá chemických reakcí s Lithiem a sdílí mnoho vlastností s rozšířenými lithium iontovými bateriemi (akumulátory). Mezi klíčové výhody LiFePO4 je bezpečnost (odolnost proti tepelným únikům) a schopnost dodávat vysoký proud při špičkových odběrech. Vzhledem k nižší nákladě jsou uhlíkové různě dobré (duben 2009) lze na trhu najít převážně baterie vyráběné v Číně, což se promítá do ceny náklady na dopravu a vysokou poptávkou.

Nevýhody:

Uváděná energetická kapacita nové LFP baterie je o něco nižší než u nových LiCoO2 baterií. Výrobci baterií na celém světě v současné době pracují na nalezení způsobů, jak maximalizovat výkon a energetickou kapacitu, snížit velikost a hmotnost.
U zcela nových LFP bylo zjištěno, že předčasně selžou, pokud jsou "hluboko cyklovány" (vybitý pod úroveň 33%). Pauza po 20 nabíjecích cyklech je v současné době doporučována některými distributory. (březen 2009)

Rychlé nabíjení zkrátí životnost lithium-iontové baterie (včetně LFP) v porovnání s tradičním neustálým dobíjením (trickle charging). (březen 2009)

Rezervy lithia jsou odhadovány na 30000 tun v roce 2015.

Zatímco články využívající LiFePO₄ mají nižší napětí a energetickou hustotu v porovnání s obvyklými LiCoO₂ Lithium-iontovými akumulátory, tato nevýhoda je časem vykompensována pomalejším snižováním maximální kapacity. Uvádí se, že LiFePO₄ článek má už po roce v užívání zhruba stejnou energetickou hustotu jako obvyklý LiCoO₂ Lithium-iontový akumulátor.

Specifikace

- Napětí článku = minimální vybíjecí napětí = 2,8 V. Pracovní napětí = 3,0 V až 3,3 V. Maximální nabíjecí napětí = 3,6 V.
- Volumetrická (objemová) energetická hustota = 220 Wh/L
- Gravimetrická energetická hustota = 90+ Wh/kg
- Cyklů do 80% stavu kapacity při hlubokém vybíjení (na úroveň vybití 100%)= 2000 - 7000 (Počet cyklů do degradace baterie na 80 % její původní udávané kapacity) [2]
- Složení katody (hmotnost)
 - 90 % katoda-LiFePO₄
 - 5 % Uhlík EBN-10-10
 - 5 % PVDF
- Konfigurace článku
 - 15 Uhlíkem potažených hliníkových kolektorů
 - 1.54 cm² katoda
 - elektrolyt: EC-DMC 1-1 LiClO₄ 1M
 - anoda: lithium
- Experimentální podmínky:
 - Pokojová teplota
 - Limitní napětí: 2,5 – 4,2 V
 - Nabíjení: C/4 až k 4,2 V, potom potenciostaticky na 4,2 V až do I < C/24

Bezpečnost

LiFePO₄ je podstatně bezpečnější katodový materiál než LiCoO₂. Fe-P-O vazba je silnější než Co-O. V případě zkratů, přehřátí a jiných nesprávných způsobech využití, je výrazně těžší odstranit kyslíkové atomy. Tato stabilizace redoxní reakce také napomáhá rychlému přemísťování iontů. K havárii dochází teprve při extrémním přehřátí (800 °C a výše).

Při přemísťování lithia z katody u LiCoO₂ článku, CoO₂ prochází nelineární expanzi, která ovlivňuje strukturální integritu článku. Plně lithiovaný a nelithiovaný stav LiFePO₄ jsou strukturálně podobné, z čehož vyplývá lepší strukturalní stabilita LiFePO₄ než mají LiCoO₂.
U plně nabitého akumulátoru s LiFePO₄ nezůstává žádné lithium na katodě — u akumulátoru s LiCoO₂ zůstává okolo 50% v katodě. LiFePO₄ je vysoce houževnatý při ztrátě kyslíku, která ústí v exotermickou reakci u jiných typů lithiových akumulátorů.

2.7. Neelektrické testování baterií

- **Zkušební podmínky**
 U všech uvedených zkoušek a u testování obecně, platí, že musí být uvedeny zkušební podmínky, aby bylo možné získat opakované výsledky, a provést smysluplné srovnání. Mezi zkušební podmínky se zahrnují faktory, jako například metoda měření, teplota prostředí, zatížení a pracovní cyklus. Například kapacita baterií a životní cyklus, jsou dva klíčové ukazatele výkonnosti a liší se v závislosti na teplotě a rychlosti vybíjení, ve kterém byly testy prováděny. Specifikace baterií by měla vždy obsahovat zkušební podmínky, aby se zabránilo nějasnostem.

- **Kvalifikační Testování**
 Testování kvalifikace určuje, zda článek nebo baterie je vhodný pro účel, pro který byl určen před tím, než je schválen pro použití v produktu. To je zvláště důležité v případě, že baterie se má použít v "kritických" aplikacích. Jedná se o komplexní testy prováděné nejprve na malém počtu baterií, včetně testování, v případě potřeby, kdy dojde ke zničení některé z nich. Ve druhé fázi kvalifikace zahrnuje, také testování baterií konečného produktu a až pak je uvolněn pro zákazníka. Testy jsou obvykle prováděny za účelem ověření, zda baterie splňují specifikací výrobců. Tyto testy můžou být také použity pro testování baterií v libovolných mezích stanovených aplikací, pro které jsou určeny a které se určují, jak dlouho baterie přežijí za nepříznivých podmínek nebo mimořádných zatíženích, určuje se selhání režimu nebo bezpečnostní faktory.

 Akumulátor by měly být testovány také s doporučenou nabíječkou s cílem zajistit kompatibilitu. Zejména musí být vyhodnoceny potenciální uživatelské chyby, aby se zajistilo, že se baterie omylem nepřebíjejí.

- **Mechanické testování**
 Mezi mechanické testy patří jednoduché testy pro rozměrovou přesnost na dynamické zkoušky. Mechanické testy slouží pro ověření, že výrobek může přežít všechny statické a dynamické mechanické namáhání, kterým může být předmětem vystaven.

 Testování na životní prostředí
 Testy na vliv produktu na životní prostředí jsou navrženy tak, aby se zjistilo, zda daný produkt vyhovuje všem podmínkám v oblasti životního prostředí, se kterými se může výrobek pravděpodobně setkat během svého celého života.

- **Bezpečnostní normy**
Spotřební výrobky obvykle musí být v souladu s národními nebo mezinárodními bezpečnostními normami požadovanými bezpečnostními organizacemi zemí, ve kterých jsou výrobky prodávány. Příklady jsou UL, ANSI, CSA a normy IEC.

DEF standardy
Články použité ve vojenských aplikacích musí obvykle splňovat přísnější požadavky než ty, které se používají ve spotřebitelských výrobcích.

Zkušební cyklus
Zkušební cyklus je možná nejdůležitější kvalifikační zkouška. Články jsou vystaveny opakovanému nabití - vybití a ověřuje se, zda baterie mají stejnou nebo vyšší kapacitu, dle životního cyklu výrobce.
Faktory jako teplota, hodnota nabití a hloubka vybití, mají významný vliv na životní cyklus článků. V závislosti na účelu zkoušek, teplotě a DOD by měly být řízeny v dohodnuté referenční úrovni, aby byly výsledky opakovatelné, které mohou být ve srovnání se standardem. Alternativní testy mohou být použity k simulaci provozních podmínek, ve kterých se teplota nechá stoupnout, nebo DOD se mění, aby se zjistilo, jak bude ovlivněna životnost.

Podobně je životní cyklus ovlivněn v průběhu nabíjení a vybíjení, a proto je velmi důležité nastavit správné napětí a proudové omezení.

Zkušební zatížení
Zátěžové testování slouží k ověření, že baterie může dodávat své specifické výkon v případě potřeby.
Zátěžový test je obvykle navržen tak, aby byl reprezentativní za předpokládaných podmínek, ve kterých mohou být použity baterie. Vybižení může být konstantní nebo pulzní, nebo v případě automobilových baterií, může být test navržen tak, aby zatížení simulovalo typický jízdní styl. Low testování energie se obvykle provádí s odporovou zátěží. Pro velmi výkonné elektrické testování s proměnnivým zatížením, může být nutné použít další techniky.
Při impulzním vybíjení se může zdát, že má baterie větší kapacitu než při trvalém vybíjení. Je to proto, že baterie je schopna se obnovit během nečinnosti mezi impulzy vybíjení. Proto testování kapacity baterie s kontinuálním odběr velkého proudu nemusí nutně poskytovat výsledky, které představují schopnost dosažitelné s aktuálním profilem použití.

Kalorimetrie
Řízení teploty baterie je důležité pro vysoce výkonné akumulátory. Získání přesných údajů teploty z bateriových modulů je základem pro navrhování systémů řízení teploty baterie. Kalorimetrie se používá ke kvantifikaci celkového množství tepla generovaného baterií, když je cyklicky prostřednictvím testovacího cyklu nabíjená a vybíjena. Je to v podstatě izolovaný box, ve kterém je umístěna baterie, který
zachycuje a měří teplo baterie při testovacím cyklu. Systém je kalibrován porovnáním tepla generované baterií s teplem generovaným známým zdrojem tepla.

Termovize se používá ke kontrole "hot spots", které by naznačovaly body vysokého tepelného namáhání v buňce nebo akumulátoru. Je to fotografická technika, která zaznamenává intenzitu infračerveného záření emitovaného subjektu pomocí speciální kamery. Obrázek na levé straně, je z lithium ion vak buňky po delším výboji při 4 °C. V tomto případě je teplota rovnoměrně rozložena v buňce a svorky buňky běží v pohodě. Tyto testy mohou pomoci identifikovat problémy, jako je přehřátí, nedostatečné tepelné potopení nebo průtok vzduchu, podsítných vodíčů elektrického proudu a rušení od sousedních buněk nebo zařízení. Obrázky mohou být také použity k určení nejlepšího umístění snímačů teploty, které jsou používány v ochranných obvodech.

- **Elektromagnetická kompatibilita (EMC) testování**

Elektromagnetická kompatibilita (EMC) je schopnost elektrického a elektronického zařízení a systému pro provoz, odolávat jinému elektrickému nebo elektronickému zařízení nebo jiným zdrojům rušení, jako jsou síla přechodových čar, působením rádiových frekvencí (RF), digitálními pulsy, elektrickými stroji, blesky nebo jinými vlivy. EMC se týká jak emise elektromagnetického rušení (EMI nebo radiofrekvenčního rušení (RF) u výrobku nebo zařízení a s citlivostí výrobku na EMI emitovaného z jiných zdrojů. Interference mohou být prováděny prostřednictvím sily nebo signálních vedení, nebo na podvozku zařízení, může být rozšířena prostřednictvím indukční nebo kapacitní vazby, nebo může být vyzařováno do atmosféry.

Jen proto, že jsou baterie DC zařízení, nemůžeme předpokládat, že jsou imunní vůči problémům s EMC. Podobné problémy jsou možné v automobilovém průmyslu, kde je výkon kabeláže notoricky hlučný kvůli rušení od zapalovacích systémů a přechodů z elektrických motorů a spinačů. Zatímco baterie sama o sobě nemůže vytvářet RF rušení, nelze totéž říci o nabíječce. Mnoho nabíječek používá k přepínání režimu regulátorů, které jsou také notoricky známé pro vysílání elektrického šumu. Vyzařované EMI může mít zásadní význam pro takové aplikace, jako jsou kardiostimulátory, lékařské přístroje, komunikační zařízení a vojenské aplikace. Různé techniky se používají k minimalizaci dopadů EMI. Citlivé části obvodu mohou být fyzicky odděleny od zdrojů rušení, zařízení může být v uzavřené zapečetěné
kovové krabice, mohou být jednotlivé části obvodů stíněny, s kovovou fólií, filtry mohou být přidány, nebo kably k odfiltrování šumu.

Testování EMC zahrnuje specializované testovací zařízení a vybavení. Zkoušky se musí provádět v prostředí bez jiných zdrojů elektromagnetického rušení. To znamená ve zvukových komorách nebo Faradayově kleci. Jsou zapotřebí speciální šíroke rozsahy zdroje signálu a citlivé přijímače pro generování a měření rušení.

- **Kontrolní a výrobní testování**

Účelem testování výrobní inspekcje je ověřit, že buňky, které byly zakoupeny a produkty postavené jsou s nimi v souladu s dohodnutými specifikacemi. Ověření má tendenci být provedené krátkými testy na 100% propustnost, nebo na reprezentativních vzorcích. Složení materiálů, z nichž jsou součásti vyrobené, by nemělo být přehlíženo.

Typické zkoušky zahrnují jak mechanické tak elektrické zkoušky. K elektricky měřeným parametřům patří vnitřní impedance a výstupní napětí článku nebo baterie s nebo bez zatížení. Baterie je rovněž nabíjená krátkou dobou nabíjení a vybíjena pulsy asi 2 milisekundy.

Akumulátory jsou obvykle podrobeny komplexnímu testování, aby zajistily, že elektronika funguje správně. Ochranný obvod se ověřuje použitím zkratu na svorku baterie po dobu 1 nebo 2 sekund.

- **Monitorování výkonu**

Sledování výkonu slouží k ověření, zda článek je nadále schopen pracovat podle potřeby, jakmile je použit v aplikaci, pro kterou byl určen. Jedná se o jednotlivé testy specifikované uživateliem.

Neexistují žádné jednoduché přímé měření, jako je například umístění voltmetru na svorkách, k určení stavu akumulátoru. Voltmetr může říci něco o stavu nabíjení (s obrovskou chybou), ale nelze z této hodnoty zjistit, zda bude akumulátor dodávat požadovaný proud.

- **Vnitřní odpor**

- **Stav nabití (SOC)**

Pro mnoho aplikací, uživatel potřebuje vědět, kolik energie v baterii zbývá. SOC je také základním parametrem, který musí být sledován a kontrolován v systémech řízení baterií. Metody odhadu SOC jsou vysvětleny v kapitole o stavu nabití.
Seznam další literatury, www odkazů ap. pro zájemce o **dobrovolné** rozšíření znalostí popisované problematiky.

3 Balanční systémy
Bateriový řídicí systém (Battery management systém – BMS) je v podstatě jakýkoliv elektronický systém, který řídí nabíjecí cyklus baterie nebo packu baterií. Jeho úkolem je například chránit baterii před proudovými špičkami při nabíjení, sledovat stav baterií (jejich kapacitu), optimalizovat nabíjení podle předem definované nabíjecí křivky dané typem baterie a další.
Většinou jsou tyto bateriové systémy umístěny přímo na kontaktech baterií, propojeny pomocí externích komunikačních sběrnic do hlavní řídicí jednotky.

Funkce BMS
BMS může plnit funkci monitoringu a sledovat různé parametry:
- Napětí na bateriích, celkové napětí v packu, minimální a maximální napětí na článcích
- Teplotu na bateriích při provozu, při nabíjení, průměrné teploty
- Stav nabíti nebo hloubkového vybití, indikaci těchto stavů
- Stav baterií, jejich celkovou kapacitu a poklesy
- V případě chlazení baterií také průtok chladicí kapaliny či vzduchu, teplotu vstupního a výstupního chladicího média
- Dobíjecí a vybíjecí proudy

- Doplňkové vypočtené hodnoty
Kromě monitoringu výše zmíněných hodnot jsou jednotky BMS schopny dodávat informace o:
- Maximálním nabíjecím proudu
- Maximálním vybíjecím proudu
- Dodanou a odebranou energii v kWh
- Vnitřní impedanci článků
- Čas nabíjení jednotlivých buněk (celku)
- Celkový počet cyklů
- Dobu provozu od předchozího nabíjení

- Komunikace
Pro komunikaci mezi jednotlivými BMS jednotkami se používají nečastěji tyto komunikační prostředky:
- Sériová komunikace – CAN sběrnice, která se nejčastěji používá v automobilové technice
- Přímá vedení
- DC-BUS – sériová komunikace přes elektrické vedení
- Bezdrátová komunikace

Vnitřní BMS může používat inteligentní systém baterií prostřednictvím komunikačních sběrnic SMBus a PMBus.

- Ochrana
BMS mají kromě řídících informačních funkcí také funkci ochrannou a to:
- Nadproudová ochrana
- Podnapěťová ochrana
- Přehřátí
- Přetlak

84
- Zemní svodové proudy nebo jejich detekci

Obecným a hlavním úkolem BMS jednotek je optimalizovat nabíjecí a vybíjecí cykly baterií.

3.1. Topologie BMS jednotek

BMS technologie spadají do 3 kategorií:
- Centralizované – jedna řídící jednotka je připojena k článkům baterií
- Distribuované – BMS je instalována na každém článku a propojena komunikačním rozhraním do hlavní jednotky
- Modulární – několik jednotek sloučených do packu a každý pack propojený komunikačním rozhraním

BMS pro Lipol články

Srovnávačky Lipol článků (v čině běžně užívaný název balancery) mohou být v zásadě dvojího druhu.

I. jednoduché typy, které ve skutečnosti nesrovnávají, ale pouze omezují napětí na max. povoleno hodnotě (např. 4,25V / článek) nebo na hodnotě nastavitelné trimrem.

II. procesorem řízené srovnávačky, které skutečně aktivně srovnávají napětí všech článků během celého nabíjení.

- Srovnávačky typu I

Tyto srovnávačky jsou levné ale mají také svá omezení a nedostatky. Nedá se totiž říci, že by tento typ srovnávaček skutečně články srovnával (zde by byl více na místě název „omezovač napětí“), nicméně zabraňují přebití článků, což je pro Lipol články důležité.

Situace na obrázku je pro tento druh srovnávaček typická:
- článek č. 1 byl více vybit (třeba proto, že má o trochu nižší kapacitu než ostatní dva články), a má proto menší počáteční napětí
- v rámci nabíjení (i velmi dobrou, kvalitní a přesnou nabíječkou) se napětí jednotlivých článků zvyšují
- u článků, které začínaly na vyšším napětí, vzrostou napětí na 4,25V dříve (celkové napětí nabíječky je těsně po 12,6V)
- srovnávačky č. 2 a č. 3 začínají omezovat napětí na 4,25V u článků 2 a 3
- nabíječka dosáhla maximálního celkového napětí pro 3 články (12,60V) a začíná omezovat proudy
- napětí článku č. 1 je však pouze 4,10V a tak to již zůstane až do konce nabíjení (články jsou „rozhouzeny“ o 150 mV !!!)
U takto nabitých článků ovšem není článek č. 1 plně nabit a při následném vybíjení bude vybit opět jako první. Pokud nemůžete nastavit na regulátoru vyšší celkové vypínací napětí a články plně vyčerpáte (tj. až na vypínací napětí regulátoru, zde 9V), bude článek č. 1 v každém případě podbit (a to i dost značně) a devastace toho článku bude s dalšími cykly rychle pokračovat do jeho úplného zničení.

Pro pulzní nabíječky mohou být poměry ještě horší a s některými pulzními nabíječkami nespolupracuje tento typ srovnávaček vůbec. Situaci můžeme mírně zlepšit nastavením omezovacího napětí na nižší hodnotu (třeba 4,23V), ale musíme zde nechat rezervu nad koncovým napětím nabíječky. Pokud by totiž bylo omezovací napětí stejné (nebo nižší), jako je max. napětí článků z nabíječky, nabíječka by nemohla ukončit nabíjení, protože by trvale tekli proudy přes srovnávačku!

Problematickou záležitostí těchto typů je mechanický nastavovací prvek (pokud jej obsahují). Není-li totiž nastavení provedeno již ve výrobě, a to bez proměnných nastavovacích prvků, používají se otočné odporové trimry. Tyto však mají omezenou teplotní i časovou stabilitu. Velmi často se stačí jen dotknout nastavovací hřídelky, a to dokonce i u víceotáčkových trimrů, a nastavená hodnota se posune někam jinam.

Srovnávačky typu II

Tyto srovnávačky jsou sice dražší, ale na rozdíl od typu I skutečně aktivně srovnávají napětí jednotlivých článků na stejnou hodnotu, a to po celou dobu nabíjení (např. balancery BLCR 4, 4F, BLCR 4FC, BLCR 5F nebo balancery v nabíječkách AQCB XC). Jsou řízeny procesorem. Ve výrobě je nastavena přesnost měření pomocí procesu kalibrace. Kalibrační hodnoty jsou uloženy trvale v procesoru a nemění se (nepodléhají vlivům prostředí). Tyto balancery upozorňují na články, jejichž napětí je mimo povolene meze (články vybité pod 3V), upozorní i velmi hlasitě akusticky na případ, kdy napětí některého článku překračuje 4,25V (zvolen příliš velký nabijecí proud vzhledem k maximálnímu vyrovnávacímu proudu, stavu vypínání a stavu „rozhození“ článků) případně, že napětí všech článků překračuje 4,25V (vdána nebo
zle nastavená nabíječka). I v případě, že nabíječka je nastavena na nižší napětí (např. 4,17V / článek) nebo nedosáhla ještě maximálních napětí, jsou články srovnány a napětí článků je v toleranci typicky ± 10 mV.

Obr. 70 – Schéma srovnávačky typu II

Balancery tohoto typu mohou spolupracovat s nabíječkami jak stejnosměrnými, tak i pulzními. Díky tomu, že srovnávají napětí článků od počátku nabíjení, mají delší čas na srovnání článků a nabijecí proud proto může být několikanásobně vyšší než vyrovnávací proud (na rozdíl od typu I). Než se články nabijí na koncové napětí, tak i menšími vyrovnávacími proudy lze „přibrzdit“ nabíjení článků s vyšším napětím tak, aby se jejich napětí vyrovnala.

Koncepce a princip reálně balancujícího BMS (Battery Management Systém) typu 2

Nabíjení

Na rozdíl od "balancujících nabíječek" není nabíjen a balancován nabíječkou samostatně každý článek, ale je použita jedna nabíječka na celkové napětí / proud a každý článek má přiřazen svůj vlastní intelligentní balancující obvod.

Pokud uvažujeme kapacitu trakční baterie 100Ah, je při neshodě článků ±2,5% (a to může být v případě např. článků Thunder Sky podstatně více) zapotřebí vyvažovací proud až 5A pro nabíjení 100A (1 hodinové nabíjení) – to v případě, pokud je vyvažování aktivní po celou dobu nabíjení, tedy od počátku nabíjení, ne jen na konci (vyvažování "na konci nabíjení" potřebuje buď velké vyvažovací proudy, nebo velmi dlouhý čas – obojí je nevýhodné). Pro 200Ah baterii a proudy 200A je to dvojnásobek nebo 100A a prodloužení nabíjecího času na cca 2 hodiny, atd.

Jinak řečeno, během noci (8 hodin) je možno nabíjet baterie až 400Ah proudem 50A a na vyvažování stačí odvádět proudy 2,5A nebo až 800Ah proudem 100A a vyvažovat proudy do 5A.

K dispozici jsou také balancovací / měřicí jednotky pro balancující proudy až 10A a jednotky balancující 12V baterie.

Energetická bilance (ztrátové výkon, teplo) pro nejhorší případ (jeden článek s větší kapacitou, zbytek, třeba 33 článků LiPo s menší kapacitou pro 125V nominální napětí baterie) – musíme odvádět výkony cca 5A × cca 4V × 33 článků = 660W, což
je sice docela dost, nicméně obvod balancující jeden článek bude nucen vyzařovat při 5A vyrovnávání "jen" asi 20W, což je řešitelné.

Toto vede na koncepci samostatných reálných balancerů (balancování po celou dobu nabíjení), které jsou řízeny jednou základní jednotkou. Je tedy možné vytvořit BMS pro libovolný počet článků ("n") zapojených do série pomocí "n" balancerů + 1 řídící jednotky.

Jednotlivé samostatné balancující / měřící jednotky jsou připojeny k jednotlivým článkům baterie a jsou ovládány základní řídící jednotkou, se kterou neustále komunikují.

Řídící jednotka, kromě řízení balancerů, zprostředkovává také měření napětí, teplot, proudů, bezpečnostní odpojování, komunikaci s nabíječkou, komunikaci s regulátorem(y) motorů, komunikaci s obsluhou.

Velmi vhodné je, pokud řídící jednotka skutečně může komunikovat jak s nabíječkou, tak s řídící jednotkou motoru. Pak lze snadno zařídit hladkou spolupráci i v hraničních situacích (nestíhá se balancovat, je nutno omezit nabíjecí proud, baterie hodně vybitá, nutno omezit výkon motoru,). Pokud nebude zajištěna tato komunikace, nezbývá nic jiného (v těchto mezních situacích) než aby BMS odpojila nabíječku / motor, což není úplně optimální. Odpojovače by měly být aktivovány jen pro opravdu havarijní situace (nabíječka se zbláznila, motor shořel apod.).

Obr. 71 – Schéma BMS
Vybíjení

Jednotlivé balancující / měřící jednotky jsou využívány jako měřící jednotky i v rámci vybíjení baterie. Opět je řídící jednotkou vyhodnocován stav každého jednotlivého článku, hlídána teplota článků, napětí každého článku, jeho vnitřní odpory, celkový proud, celkový stav oproti ostatním článkům, ... a v případě překročení nastavených limitů je zátěž odpojena. Jednotka může rovněž v předstihu upozorňovat na blížící se vybití apod.

Další zdroje

Seznam další literatury, www odkazů ap. pro zájemce o dobrovolné rozšíření znalostí popisované problematiky.

4 Balanční systémy

Text seznamuje čtenáře s historií vývoje hybridních vozidel pro automobilní dopravu. Cílem technických řešení bylo snížení spotřeby paliva, snížení emisí. Současně to kladlo velké nároky na akumulační systémy elektrické energie. Heslovitě je na úvodu uváděn historický vývoj výroby akumulátorů v ČR, jsou uváděna fakta o vývoji vybraných výrobků s velkým vlivem i na region MSK. Čtenář se seznamuje se základními pojmy, na které může narazit v rozšiřující literatuře.

4.1. Historie výroby baterií v Čechách

- 1889 byla ve válcnách mědi STABENOV v Čelákovicích u Prahy zřízena výroba olověných akumulátorů,
- 1907 francouzská firma LeClanché a spol. zahájila v Praze – Vysočanech výrobu zdrojů proudu založených na vlastních patentech,
- 1908 německá AFA – Akkumulatoren Fabrik A.G. z Hagenu (dnešní Varta) založila firmu TUDOR v Mladé Boleslavi. Výrobila zde olověné akumulátory,
- 1911 německá firma Schmidt a spol. otevřela svůj závod v Děčíně – Podmoklech, kde kromě jiného vyráběla zdroje se známou Daimon,
- 1919 Český podnikatel Jaroslav J. Pála, spolumajitel firmy Hamburger Batterienfabrik (HABAFA) založil veřejnou obchodní společnost „Pála a spol., továrna elektrických článků a baterií ve Slaném“, tato forma byla v roce 1920 změněna na akciovou společnost zakoupena od německé firmy HABAFA recepturu na vylepšení plochých baterií, a to tak, že žárovka svítí až 7 hodin.
- V roce 1925 firma ve Slaném zaměstnávala 77 pracovníků a rostoucí produkci nestačily prostory pronajatého cukrovaru. Bylo započato se stavbou nového závodu v místech, kde firma sídlí dodnes,
- 1930 firma ve Slaném prosperovala a stále rozšiřovala svůj výrobní program – vyráběla baterie, svítí a svitilňová pouzdra,
- 1933 období velké hospodářské krize a je zaveden více sortimentního výrobního programu. Od této doby se vyrábí různějšího rázu Palaba, vyráběné ve spolupráci s firmou Philips, kyselé olověné akumulátory jako konkurence značce Varta. Tyto akumulátory Palaba byla osazována např. do automobilů Walter,
- 1936 firma rozšířila výrobní program o chemickou výrobu čistidel pro domácnost, signalizačních přístrojů a zařízení a dalších výrobků z oboru jemné mechaniky,
- 1938 v době mobilizačních příprav a budování civilní protiletecké ochrany firma vyráběla a dodávala kromě rostoucího počtu baterií i plynové masky a další prostředky pro civilní ochranu,
- 1944 v průběhu války firma zaznamenala největší rozmach. Zaměstnávala téměř 600 zaměstnanců a vyráběla 31 mil ks. baterií ročně,
- 1946 založen národní podnik Bateria, do kterého byly začleněny tehdejší firmy Pála a. s. Slaný a Elektrotechnická továrna Schmidt a spol. Děčín – Podmokly,
- 1948 Národní podnik Bateria zahrnuje 15 pobočních závodů,
- 1955 v důsledku specializace výroby byly postupně některé závody zavíráno. Nakonec zůstává hlavní závod ve Slaném a pobočky v Brně a Vrútkách,
- 1959 v podniku Bateria byla vyvinuta a začaly se vyrábět speciální hořčikové baterie,
- 1965 po několika reorganizacích je podnik začleněn do koncernu Tesla Praha. Zvyšuje se produkce klasických válcových baterií. Začal se poloprovodně vyrábět
první vlastní NiCd akumulátor. V 60. letech byly vyvinuty i první speciální zdroje pro vojenské účely,
• 1970 změna technologie výroby monočlánků, nakupeno zařízení od anglické firmy Vidor. Dochází k dosud největšímu nárůstu produkce. Dokončen vývoj NiCd akumulátoru se sinterovanými elektrodami o kapacitě 4Ah a zahájena výroba,
• 1980 Baterie Slaný byla zařazená do koncernu TESLA – Spotřebná elektronika Bratislava. Byla dokončena výstavba nové sedmipodlažní budovy, která měla sloužit především vývoji a výrobě speciálních baterií a akumulátorů,
• 1984 Rozpory mezi rostoucí poptávkou a kapacitnimi možnostmi výroby kapesních baterií byl řešen modernizací výrobního zařízení (dovoz linek Schuler, SAFT, a Singer z USA a Francie).
• 1985 instalována nová michárna směsí Varta. Podnik vyrábí 144 mil. ks baterií ročně,
• 1988 podnik vyčleněn z koncernu a zřízen státní podnik Bateria Slaný,
• 1989 ukončen vývoj a zavedena poloprovozní výroba leteckého palubního NiCd akumulátoru 24V – 25Ah. Neustále se zvyšuje produkce, mj. NiCd akumulátorů do kapacity 7Ah. Dokončen vývoj lithiové baterie vel. AA a knoflíkových článků BR 2025 a CR 2025,
• 1990 Státní podnik Bateria usiluje o založení společného podniku s významným zahraničním partnerem z oboru baterií. Důvodem je zaostalo výroby primárních baterií jako důsledek dlouholetého soustředění vývoje pouze na speciální baterie. Perspektivní program niklkadmiových akumulátorů a lithiových baterií i dalších speciálních zdrojů pro armádní a další účely byl z především politických důvodů zastaven,
• 1991 Byla podepsána společenská smlouva o založení společného podniku s Ralston Purina Overseas Battery Company. Americký partner vložil cca 65% podílu, Bateria Slaný zbývajících 35%, především v podobě převodu výroby kapesních baterií a strojního zařízení. Celkové investice byly tehdy odhadovány na 26 mil. USD s tím, že produkce podle tehdejších úvah měla představovat cca 300 mil. ks článků, z nichž 120 mil. ks by bylo vyváženo na západní trhy.
• 1992 Schválen privatizační projekt státního podniku Bateria Slaný. Fond národního majetku se stal jediným akcionářem společnosti Bateria Slaný a. s.
• 1993 Po 1. vlně kupónové privatizace vlastnilo akcie společnosti cca 7 000 akcionářů, z nichž nejvýznamnější byly investiční fondy České spořitelny, Živnobanky a VÚB. Na 1. valné hromadě byla chválena změna názvu na Palaba a. s. Slaný.
• 1993 Palaba a. s. svou činnost provozovala v rozličných divizích, z nichž divize NiCd akumulátorů se kompletovaly sestavy především pro radiostanice,
• 1996 Palaba a. s. prodala svůj podíl ve společném podniku Ralston/Bateria americkému partnerovi, který se stal jediným vlastníkem společnosti později přejmenované na Energizer Czech, s.r.o.,
• 1997 z divize NiCd vznikla dceřiná společnost Bateria Slaný CZ, s.r.o. Do obchodního období vznal kromě montáže bateriových sestav zahrnuto i primární kapesní baterie vyráběné pod značkou Bateria,
• 1998 zahájen prodej primárních baterií Bateria,
• 1999 Obchodní sortiment firmy je rozšířen o baterie do mobilních telefonů, prodávaných pod značkou Bateria. Prodej primárních baterií Bateria zajistil firmě odhadovaný 20% podíl na trhu,
• 2000 firma zahájila prodej bezúdržbových olověných akumulátorů s řízenými ventily ve spolupráci s řeckou společností Germanos,
• 2001 firma rozšířila svůj obchodní sortiment značky Bateria o svítíny a autobaterie,
• 2002 firma dále rozšiřuje svůj sortiment – v oblasti primárních baterií o řadu alkalických článků, v oblasti svítílen například o speciální montážní svítíny,
• 2003 přichází další rozšíření sortimentu – firma se stala výhradním distributorem hermeticky uzavřených, bezúdržbových olověných akumulátorů firmy HAZE Battery Co.Ltd.,
• 2004 firma v souladu s novými technologiemi začíná sortiment uvysoc svítivé a energeticky velice úsporné svítíny s LED diodami pro různá využití (camping, cykloturistiku, potápění, trekning, horolezectví, rybaření apod.)

4.2. Další výroba baterií
Francouzská firma SAFT (celým názvem Saft Groupe S.A.) je největším výrobcem akumulátorů a baterií v Evropě. Celkově zaměstnává na 3800 lidí v 18 zemích světa, s 16 výrobními a dalšími vývojovými a výzkumnými místy. Zabývá se nejenom výrobou akumulátorů a primárních článků, ale též navrhuje a vytváří pokročilé technologie v tomto oboru, a to zejména pro průmyslové využití, ale též pro armádu či letecký i kosmický průmysl.

• Společnost byla založena v roce 1918. Název SAFT je odvozen od prvního názvu společnosti: Société des Accumulateurs Fixes et de Traction.
• V roce 1928 zakoupil společnost Compagnie Générale d’Electricité (budoucí Alcatel).
• V roce 1995 se Alcatel z tohoto vlastnictví vykoupil a stal se naopak vlastníkem společnost SAFT Group.
• Ve stejném roce SAFT kupuje společnost FERAK a zakládá na našem území společnost SAFT–Ferak a.s.
• V roce 2000 kupuje izraelský Tadiran, který se zabývá hlavně výrobou primárních lithiových článků a 50% podíl v německé společnosti Sonnenshein Lithium a rok později je již 100% vlastníkem.
• V roce 2003 získává německou společnost Friemann und Wolf Batterietechnik GmbH (Friwo) a podíl ve společnosti Exide.
• V roce 2006 SAFT založil společný podnik Johnson Controls-Saft Advanced Power Solutions (joint-venture zaměřený především na lithiové akumulátor pro automobilový průmysl) s americkou multiprůmyslovou společností Johnson Controls, Inc.
• V roce 2008 se již v závodě v Nersacu (Francie) rozjíždí sériová výroba Lithium akumulátorů pro pohon elektromobilů a hydridních vozidel.

Skupina Saft Groupe S.A. se dělí na tři divize: Industrial Battery Group (IBG), Specialty Battery Group (SBG) and Rechargeable Battery Systems (RBS).
• Industrial Battery Group vyrábí akumulátor a baterie na bázi niklu a lithia pro náročné průmyslové aplikace jako např. vysokorychlostní vlaky, městskou tranzitní síť, tramvaje a metra.
Specialty Battery Group navrhuje a vyrábí vysoce výkonné lithiové primární články Li-Ionové akumulátory do elektronických zařízení, pro obranný a vesmírný průmysl.

Rechargeable Battery Systems se zaměřuje na profesionální akumulátory na bázi niklu (Ni-Cd and Ni-MH).

Na území ČR má dceřinou společnost SAFT–Ferak, a. s. – jedná se o výrobní závod s 200 zaměstnanci, jenž se nachází v Raškovicích nedaleko Frýdku-Místku, který nabízí kompletní sortiment průmyslových baterií, zejména pro železnice, hromadnou dopravu, telekomunikace a staniční aplikace.

Pro oblast hermeticky uzavřených akumulátorů a primárních článků je obchodním zastoupením pro ČR a SR firma BATTEX, spol. s r. o. Tato oblast zahrnuje hermeticky uzavřené NiCd, NiMH a Li-Ion akumulátory, z primárních článků pak lithiové články a vzduchem depolarizované články.

Baterie A123 systems

Společnost A123 vyvíjí a vyrábí vyspělé nanofosfátové lithium-iontové baterie. Tyto baterie byly testovány automobilkou GM v globálních laboratořích bateriových systémů ve Warrenu v Michiganu (USA). Uzavření kontraktu bylo významnými milníkem ve spolupráci s General Motors a A123. Uzavření kontraktu mělo za následek významný pohyb cen akcií. Zatímco akcie GM vzrostly o 2%, akcie A123 vyskočily o 43 %. Baterie pro General Motors se začaly vyrábět v závodě v Livonia (Michigan, USA).

Doposud dodávala baterie pro plug-in hybrid Chevrolet Volt korejská společnost LG Chem. (GM neplánuje užití nových baterií od A123 ve Voltu).

Zákazníci společnosti jako Daimler, SAIC nebo Smith Electric zůstali nadále. BMW používá baterie A123 ve svých hybridech řady 3 a 5. Také Chevrolet Spark EV je na nich závislý. V minulosti implementoval baterie společnosti i výrobce Fisker (Fisker Karma). V tisku bylo spekulováno o pozastavení výroby elektromobilu Fisker Karma vlivem přerušení dodávek baterií a bankrotu společnosti A123. Hlavním důvodem bankrotu společnosti A123 (Kessen) byl pomalý růst trhu a vady některých šarží (například svolávací akce byly jedním z mnoha faktorů, které měly vliv na vývoj firmy).

Společnost má ve spojených státech v provozu dvě továrny - financované převážně z grantů americké vlády. V současné době se firma zaměřuje na vývoj nových 12V baterií pro běžná vozidla. S rozvojem mikro-hybridů a vozidel se systémy start-stop má tato orientace v současnosti potenciální trh s dobrým výhledem.

Nová technologie Nanophosphate EXT zajišťuje vyšší životnosti baterií a široké rozmezí pracovních teplot. Cílem je eliminace termálního managementu baterií pro elektromobily.

4.3. Nanotechnologie ve výrobě baterií pro elektromobily

Výzkumné týmy z Rice University a společnosti Lockheed Martin objevily novou metodu, s pomocí které by mělo být možné zvýšit kapacitu lithium-iónových baterií až desetinásobně zvýšením schopnosti křemíku absorbovat ionty lithia. Nový objev by mohl mít zásadní vliv na vývoj elektromobilů a velkokapacitní úložné energetické zařízení.

"Anoda, čili záporný pól, dnešních baterií je vyroben z grafitu. Současné technologie neumožňují implementovat více lithia do grafitu. Křemík má naproti tomu nejvyšší teoretickou kapacitu mezi jakýmkoliv materiály absorbovat či ukládat v sobě lithium."
"Křemík dokáže 'nasát' až 10x více lithia než uhlík, po několika cyklech roztaňování a smršťování se rozpadne." Některé jiné laboratoře se tento problém snažily řešit "koberci" nanodrátků, ale tým z univerzity v Rice na to šel jinou cestou. Do křemíkových waferů vytvořili tzv. "nanopory" o velikosti několika mikronů (10 - 50). Tím dali křemíku dostatek prostoru k roztaňování. A tak zatímco běžné lithium-iontové baterie dokází udržet asi 300 mAh na gram kabronového anodového materiálu, upravený silikon by podle týmu dokázal teoreticky udržet až 10x takové množství energie.

Nanopory je jednodušší vyrobit nežli nanodrátky. Vytvářejí se, když je na jednotlivé strany křemíkového waferu aplikováno kladné a záporné napětí. Wafer se pak leptá hydrofluorovým rozpouštědle. Póry se formují vertikálně kvůli pozitivnímu a negativnímu napětí.

Jde o relativně jednoduchý proces, který by tak mělo být snadné reproducovat na průmyslové bázi. Výhodou baterií s využitím zmíněného "děravého" silikonu je i jejich životnost, která je vyšší než v případě křemíku potaženého „nanodrátky“.

4.4. Historie hybridních vozidel

Myšlenka hybridního pohonu není nová. Na přelomu 19. a 20. století měl elektrický pohon oproti spalovacímu motoru ve svých parametrech mnoho předností. Některé velké automobilky se k myšlence hybridního pohonu vrátily ve svých experimentálních studiích zejména v 70. a 80. letech minulého století, kdy začínalo
být zřejmé, že si ochrana životního prostředí vyžádá změnu celkového přístupu ke konstrukci automobilu a jeho poháněcího ústrojí.

Lehký elektrický kočár Lohner nazvaný Mixte se stal obrovskou senzací na Světové výstavě v Paříži roku 1900. Během chvilky se prodalo na 300 kusů těchto vozů. V roce 1901 Porsche zvítězil se svým strojem na Exelberg Rally. Dokázal ujet až 50km v rychlosti 50km/h. Nová, modernizovaná verze, využívala elektromotory umístěné přímo do všech čtyř kol. Dosahovala v roce maximální rychlosti 110km/h.

Obr. 77 – Opel Ampera

Lehký elektrický kočár Lohner nazvaný Mixte se stal obrovskou senzací na Světové výstavě v Paříži roku 1900. Během chvilky se prodalo na 300 kusů těchto vozů. V roce 1901 Porsche zvítězil se svým strojem na Exelberg Rally. Dokázal ujet až 50km v rychlosti 50km/h. Nová, modernizovaná verze, využívala elektromotory umístěné přímo do všech čtyř kol. Dosahovala v roce maximální rychlosti 110km/h.

Obr. 78 – Patentový nákres hybridního auta Henriho Piepera

Historické prameny nejsou přesné a tak není jasné, zda Pieper od Porsche návrh převzal, či jak vlastně probíhal přenos znalostí o konstrukci hybridních aut mezi tehdejšími firmami. Hybridní vozidla společně s elektromobily byla první dvě dekády 20. století velmi oblíbeným dopravním prostředkem. V roce 1915 společnost Woods Motor Vehicle vytvořila systém pohonu "Dual Power". V podstatě šlo o paralelní hybrid (v patentu popsal již Pieper), který pro pohon vozu při nízké rychlosti využíval elektromotor a při potřebě vyšší rychlosti spustil benzínový agregát. Hybridní vozidla vyráběla například také Galt Motor Company z kanadského Ontaria.

Levná fosilní paliva, vylepšení spalovacího motoru, elektrické startéry a hromadná výroba na výrobních linkách podle Henryho Forda a jeho bezkonkurenčně levný Model T s benzínovým motorem způsobila na čtyřicet let ústup parních, elektrických a hybridních pohonů do pozadí.

Obr. 79 - V 70. letech představili General Motors dvoumístný sedan - elektromobil Electrovette s dojezdem 80 km na olověné baterie a max. rychlostí 48km/h.

Během druhé poloviny 60. let se znečištění ovzduší ve Spojených státech způsobené osobní automobilovou dopravou stalo velkým problémem. Především v Kalifornii, Americký Kongres představil v roce 1966 první zákony, které měly snížit toto znečištění. V roce 1965 začal s hybridními auty experimentovat General Motors. Kódové označení jednoho z jejich prvních hybridů znělo GM512. Byl vybaven benzínovým dvouválcem, elektromotorem a bateriemi. Čistě na elektřinu mohl jet rychlosti až 20km/h. Maximální rychlost byla omezena na 64km/h. Vývoj byl nakonec pozastaven a v současnosti je o něm k dispozici jen málo informací.

V roce 1970 se zákon na ochranu ovzduší (Clean Air Act) stal federálním předpisem o jehož dodržování se starala EPA (Organizace pro ochranu životního prostředí). V
roce 1971 Amory Lovins („pionýr“ oblasti automobilového průmyslu, autor knih) zveřejnil koncept Hypercar (lehké, bezpečné a šetrné auto budoucnosti).

Obr. 79 – Hybridní vozidlo General Motors GM512

Obr. 80 – "Hippiemobil" Volkswagen Transporter přestavěný na pohon na elektřinu

Ropné embargo arabských států vyhlášené v roce 1973 a první ropná krize zvýšila ceny pohonných hmot, které se staly středem zájmu veřejnosti. Americké

Obr. 81 – Victor Wouk a jeho Buick Skylark hybrid

Obr. 82 – Kromě Victora Wouka ale snili o autech budoucnosti také jiní, např. Amory Lovins s jeho konceptem nazvaným Hypercar

Cílem EPA bylo absolutní snížení (distribuování) emisí v podobě plně elektrického vozidla. Neexistovala žádná vládní podpora pro jejich vývoj. Dr. Gulton odešel do penze a nové vedení Gulton Industries odmítlo vývoj pro hybridní koncepci. Wouk společně s Charliem Rosenem založil novou společnost Petro-Electric Motors. EPA přislíbila, že pokud auto splní všechny náležitosti, objedná jich několik a firma navíc dostane i vládní zakázky.

Obr. 83 – General Motors rádi experimentovali, ale málokdy své pokus dotáhli do konce

Pro zástavbu technologie hybridního pohonu byl zvolen vůz s co největším objemem prostoru. Byl zvolen Buick Skylark. Výroba tohoto modelu však byla pozastavena. Na žádost tecnickému řediteli GM, kterého znal Wouk z EPA mu GM vyrobilo a prodalo

Obr. 84 – Dvoumístný hybrid Honda Insight první generace přišel na svět v roce 1999, vyráběl se až do roku 2006

Při testech se objevily komplikace s bohatostí směsi. Finální testy v laboratoři EPA ve městě Ann Arbor nakonec hybridní automobil splnil. Přesto ale EPA odpověděla, že o jejich postupu do další fáze testovacího programu se teprve rozhodne.

Wouk: "Vždycky jsem říkal, že hybridy jsou ta správná cesta... Pokud potřebujeme snížit znečištění ovzduší změněná část automobilů a snížit i spotřebu ve velkém měřítku, jediná věc, kterou bychom měli udělat je využít existující technologie, založit naše návrhy na dostupných technologiích, a prosté se do toho pustit. I přesto, nebo právě proto, že tyhle technologie se budou v průběhu vývoje zlepšovat. Tenhle princip byl potvrzen našimi testy v EPA. Ale nikdo až do dnešních dnů s tím nic nedělal, až teď, nezávisle na nás, Japonci - Honda a Toyota." (Úryvek z rozhovoru Victora Wouka a Judith Goodstein)

V roce 1979 v červencovo-srpnovém vydání časopisu amerického Mother Earth News byl publikován obsáhlý článek o přestavbě vozidla Opel GT na hybridní pohon Davidem Arthurstem ze Springdale v Arkansasu. Přestavba s investicí 1500USD a jedním měsícem práce zajistila u tohoto vozidla spotřebu 2,8-3,1 l/100km.
Arthurs byl jedním z prvních, kteří do svého hybridního auta zabudovali regenerativní brzdění čili rekuperaci. Brzdil totiž elektromotorem (startér pro proudová letadla), který stroj poháněl. Plány na přestavbu i samotný článek jsou k dispozici na webových stránkách časopisu.

V roce 1989 uvedlo Audi první verzi experimentálního vozidla Audi Duo. Šlo o plug-in paralelní hybrid založený na modelu Audi 100 Avant Quattro. Ve městě auto jezdilo na elektromotor pohánějící zadní osu (zdrojem byly NiCd baterie), přední náprava byla poháněna 2,3l pětiválcem s výkonem 136HP. Řidič si mohl zvolit zda chce jet na elektřinu nebo spalovací motor. Problém byla vysoká hmotnost vozidla, která zvyšovala spotřebu. Druhá generace byla vybavena silnějším elektromotorem a diferenciálem elektrického pohonu.

V roce 1992 ohlásila japonská automobilka Toyota program "Smlouva o pronájmu země". V dokumentu se zavázala vyvíjet automobily s co nejnižšími emisemi. Už za pět let měla na trhu první vlaštovku, totiž dnes již legendární Toyotu Prius, které se dosud prodalo přes milion kusů.

V roce 1997 byly v USA testovány nepoužitelné elektromobily, v Evropě se inovovala technologie dieselových motorů.
Byli to právě Japonci, kdo poprvé v moderní době, prakticky a v masovém měřítku spojil pohon vozidla s elektřinou. Nicméně už počátkem 90. let vyvíjel Chrysler soutěžní hybridní automobil kombinující pohon na elektřinu a CNG nazvaný "Patriot". Na svou dobu šlo o nejmodernější soutěžní stroj, který se měl být předveden v roce 1995. Šéfinženýr Francois Castain: „V Chrysleru jsme se toho o hybridní technologii mohli naučit, a to že jsme se nedostali na závody neznamená, že jsme neuspěli."

V roce 1993 (prezidentem USA Bill Clinton) byla v USA založena koalice vládních agentur a automobilek Chrysler, General Motors, Ford a USCAR. Cílem PNGV (Partnership for a New Generation of Vehicles) bylo vyvinout nové typy vozů s alternativním typem pohonu určenými pro masovou produkci. Výsledkem byl například elektromobil GM EV1, ale i řada dalších pozoruhodností a vylepšení v oblasti hybridních pohonů. Ty pak automobilky využily koncem 90. let a počátkem 21. století, když začaly uvádět na trh své vlastní hybridní vozy.

V současnosti probíhá podobný proces jako v 70. a později v 90. letech. USA podporují z prostředků daňových poplatníků (prezidentem USA Barack Obama) řadu automobilek i mladých začínajících společností (Tesla Motors, Fisker Automotive, ...). Jsme svědky obrovského mediálního rozmachu alternativních pohonů. Hybridní technologie pohonu však zůstává již více než deset let dominancí Japonska.

4.5. Automobilový sport
Zájemci o motorový sport mají v podvědomí měnící se pravidla soutěže Formule 1. Jednou z nejpodstatnějších je zásadní zásah do konstrukce motorů závodních vozů.

Obr. 88 – McLaren MP4-29 a jezdci Kevin Magnussen, Jenson Button a Stoffel Vandoorne. Foto: McLaren

Místo osmiválcových motorů V8 2,6 litru nové předpisy Formule 1 pro rok 2014 dovolují použití pouze šestiválcových přeplňovaných motorů V6 o objemu 1,6 litru. Omezují se velikost palivových nádrží na 100 kilogramů paliva (o 35% oproti ročníku 2013) a rychlost průtoku paliva do motoru na 100 kg/hodinu (u V8 byla neomezená).

Nové parametry donutily konstruktéry zcela přepracovat pohonný systém soutěžních vozů. Pro udržení požadovaného výkonu je tlak ve spalovací komoře nových motorů 200bar (dvakrát větší než u motorů V8). Technickým problémem tak je spolehlivost motorů (tým má podle pravidel k dispozici jen pět motorů na jednu sezonu).

Spalovací motor je jen jednou částí pohonného systému soutěžního vozu. Pohonný systém se skládá ze spalovacího motoru, motorgenerátoru a rekuperace kinetické energie, rekuperace tepelné energie, úložiště energie a řídící elektroniky.

Původní hybridní systém KERS, který umožňoval zrychlení výjezdu vozidel ze zatáček nahradila dvojice energetických jednotek. MGU-H zužitkuje energii z výfukových plynů a funguje jako elektrický generátor. Jednotka je navíc spojená s turbodmychadlem, jehož rychlost může ovlivňovat. Druhá jednotka MGU-K o výkonu 120kW/163HP je spojená s klikovou hřídelí a funguje jako přídavný elektromotor. Energii dodává elektrický akumulátor o hmotnosti 20kg.

Elektrický výkon vozu Formule 1 je 120kW (oproti ročníku 2013 dvakrát větší). V sezóně 2013 mohli piloti KERS využívat 6,7sec při každém kole, v roce 2014 to je 30 sec.

Σ

Shrnutí pojmů

Asistovaný hybrid - Elektromotor je zde využit jako "asistent" spalovacího motoru, dodává točivý moment když je potřeba - např. při zrychlování. Elektromotor je umístěn mezi spalovací motor a převodovku. Může jít opět o větší startér, který se však zapojuje vždy, když řidič šlápek na plyn. Podobně jako u mild hybridu může být využit pro opětovné startování motoru například při stání na semaforech. Tento typ
hybridního pohonu využívají hybridní auta značky Honda. Jde například o modely Honda Civic Hybrid či Honda Insight.

Mild hybrid - typ hybridního pohonu, kdy hybridní auto využívá k pohonu kol po celou dobu jízdy spalovací motor, zatímco elektromotor pouze ve vybraných situacích asistuje, např. při rozjíždění, zrychlování. Není však možné, aby hybrid byl poháněn samotnou elektřinou. Označení "mild hybrid" se často využívá pro konvenční vozidla s předimenzovanými startéry, které umožňují vypnout motor kdykoliv auto např. brzdí či zastavuje a poté jej opět rychle uvést do provozu. Zároveň je díky startéru možná rekuperace energie.

Mnoho odborníků nepovažuje takováto auta za skutečné hybridy, včetně Společnosti automobilových inženýrů. Úspory na spotřebě paliva jsou minimální, stejně tak i snížení emisí. Tento typ automobilů se vyráběl především v USA, jde např. o modely Saturn Vue Green Line od General Motors či Chevrolet Silverado.

106
kola automobilu. Obvykle se takováto auta označují jako plug-in sériový hybrid. Takto postavený je například pohoný systém zvaný Voltec, který GM buduje právě pro Chevrolet Volt, ale také např. Opel Ampera a další vozy.

Vodík je nejlehčí plyn, který lze z vody vyrábět. Právě výroba vodíku je však jednou z překážek k dalšímu rozšíření FCEV. Palivové články totiž vyžadují velmi čistý kvalitní vodík, který je složité vyrábět a přepravovat i skladovat.

Samotné palivové články nemusí také využívat pouze vodík. Existuje množství různých typů palivových článků. Např. methanolové, s polymerovou membránou, fosforečné, s pevným oxidem a další.

Paralelní hybrid - pokud dělíme hybridy podle struktury pohonu, jsou tzv. "paralelní hybridy" nejčastěji vyráběným typem hybridních automobilů. Jsou vybaveny spalovacím motorem i elektromotorem, které jsou propojeny převodovkou. Elektromotor i spalovací motor jsou zapojeny "vedle" sebe, tedy paralelně, a k pohonu automobilu lze využít buďto jeden z nich nebo oba najednou. Jiným označením pro tento typ hybridů je plný hybrid.

Jedná se o "plné hybridy", které mohou být poháněny jak čistě baterií, tak čistě benzinovým motorem, případně kombinací obojího. Výhodou takovýchto automobilů je skutečnost, že dokáží ujet např. až několik desítek kilometrů čistě na elektřinu, čímž např. ve městě výrazně snižují svou spotřebu a emise. V případě potřeby

Obr. 89 – Dobíjecí konektor Mennekes u elektromobilu Smart ED 3. Generace. Foto: Hybrid.cz McLaren

Také většina dobíjecích stanic v Evropě je dnes vybavena konektory Mennekes. To samé v březnu 2013 platí i pro síť dobíjecích stanic pro elektromobily v České republice. Mennekes podporují jak dobíjecí stanice společnosti ČEZ, tak i PRE.

KERS - neboli systém rekuperace kinetické energie je technologie využívaná u vozů seriálu závodů Formule 1. Kinetická energie, která se obvykle při brzdění mění v energii tepelnou se díky systému KERS převádí v energii elektrickou. Tu pak lze využívat ke krátkodobému zrychlení vozu.

Obr. 90 – KERS systém Flybrid, jeden z prvních svého druhu, pro vozy Formule 1. V podstatě jde o velký setrvačník. Foto: geni, licence Creative Commons

Rekuperace KERS funguje buďto na principu mechanického setrvačníku nebo baterií/superkondenzátorů. Mezi high-endová řešení KERS patří systémy Zytek, Torotrak a Xtrac, které všechny využívají převodovky CVT.

Uložená energie může dodat závodnímu monopostu krátkodobě navíc sílu až 60 kW po dobu několika vteřin. Nevýhodou je, že celý systém zvyšuje hmotnost závodních vozů F1 a je vysoce nákladný.

Supercharger - supercharger neboli “superdobíječka” je dobíjecí stanice pro elektromobily společnosti Tesla Motors. Jde o tzv. rychlodobíjecí stanici, a to v současné době nejrychlejší ze všech na trhu dostupných. Standardně má výkon 90 kW a může údajně, podle Elona Muska, jít až ke 120kW.

Běžné veřejné dobíjecí stanice pro elektromobily dnes pracují s výkony od 3kW do 22kW. Rychlodobíječky pak až do 50kW (japonský standard CHAdeMO, v Japonsku je ke konci roku 2012 instalováno kolem 1000 takových stanic). Evropský standard rychlodobíjení Combo2 pracuje s max. výkonem 43,5kW.

Proti nim je Supercharger od Tesla Motors více než 2x výkonnější. Je to potřeba, protože elektromobily Tesla, např. Model S, jsou vybaveny bateriemi o kapacitách od
45kWh do 85kWh. Plánuje se údajně také 125kWh verze. Stejné baterie budou mít i chystané elektrické SUV Model X, roadster Model R a pravděpodobně i kompakt Model C.

Obr. 91 – Původně navrhovaná podoba super-dobíječek pro elektromobily Tesla. Foto: Tesla

Automobilka Tesla Motors se proto rozhodla vybudovat po celých USA síť dobíjecích stanic určenou exkluzivně pro svá auta. Jiné elektromobily u ní dobijet nemohou, už jen z důvodu nekompatibility konektoru. Dobíjení je ZDARMA a naplno se auto dobije zhruba za hodinu (dle stavu vybití a konfigurace).

K začátku roku 2013 mohou stanice využívat de-facto pouze majitelé elektrického rodinného vozu Model S, a to pouze 60kW a 85kW verze, které jsou superdobíjením vybaveny. Výhodou je, že energie, kterou dobíjecí stanice Supercharger dobíjejí auta pochází ze slunce či obecně obnovitelných zdrojů energie. Budto jsou solární panely umístěny přímo u dobíjecí stanice Supercharger, anebo Tesla nakupuje energii z obnovitelných zdrojů. V současné době (leden 2013) je Superchargery pokryta téměř celá Kalifornie (6) a dvě se nacházejí na východním pobřeží.

Obr. 92 – Znázornění topologie budoucí sítě dobíjecích stanic Tesla Motors v USA. Foto: Tesla Motors

V budoucnu má ale síť pokrýt celé Spojené státy americké, část Kanady a brzy také Evropu. Majitelé elektromobilů značky Tesla Motors tak budou moci cestovat po světě zcela zadarmo a doslova na sluneční pohon. Elon Musk předpokládá, že "navždy".

Hybrid blue drive - architektura hybridního pohonu Hybrid Blue Drive vyvinutá společností Hyundai přináší plně hybridní systém s paralelním uspořádáním, který dokáže vůz pohánět prostřednictvím elektromotoru, zážehového motoru nebo kombinací obou zdrojů hnací síly v závislosti na jízdních podmínkách a požadavcích řidiče.

Hyundai Hybrid Blue Drive je zároveň prvním systémem, který využívá technologii lithium-polymerových akumulátorů, jejichž vlastnosti výrazně předčí stávající typy akumulátorů NiMH a Li-Ion. Lithium-polymerové akumulátory nabízejí vysoké kapacity, úspornou elektrochemií a vysoce účinné struktury, což je v rámci automobilových aplikací velmi výhodné.

Hybrid synergy drive - systém hybridního pohonu, který Toyota dlouhodobě vyvíjí pro využití ve svých vozech Prius, Highlander Hybrid, Camry Hybrid, ale také pro značku Lexus. Využívá jej například i vozy Lexus RX 400h/RX 450h, Lexus GS 450h, Lexus LS 600h/LS 600hL a Lexus HS 250h (pod označením Lexus Hybrid Drive). Pohon si licencoval také Nissan pro svůj hybridní vůz Nissan Altima. Technologii pohonu Hybrid Synergy Drive lze označit jako "plný hybrid". Jde o pokročilou verzi systému původně označovaného jako Toyota Hybrid System (THS), který Toyota poprvé představila v první generaci svých hybridů Toyota Prius v roce 1997. Od roku 2003 platí označení "Hybrid Synergy Drive", někdy se však také vyzývá také "THS II".

Převodový systém v rámci HSD označuje Toyota jako E-CVT (Electronically-controlled Continuously Variable Transmission, tedy "Elektronicky ovládaná inteligentní převodovka"). Řízení automobilu probíhá plně elektronicky, neexistuje žádné mechanické spojení mezi pohonem a řízením. Souvisejícím pojmem je paralelní hybrid.

Výhodou CVT je, že umožňuje motoru běžet v nejefektivnějších otáčkách, a tak šetřit palivo. Nebo naopak může být využita k maximalizaci výkonu, či dokonce k zavedení systému KERS.

Existuje řada typů CVT. V základu tento typ převodovky pracuje na principu dvou kuželových kol (na straně hnací i hnané), která tvoří drážku pro vedení řemenu.Variátor se dnes používá u většin skútrů, včetně sněžných, domácích sekaček, některých typů kombajnů.

V 90. letech 20. století bylo jeho využití ve Formuli 1 zakázáno. Aktuálně se využívá také pro motokáry – prodlužuje životnost jejich motorů a zvyšuje výkon. Především se ale využívá u hybridů jako je např. Toyota Prius (je součástí hybridního pohoněho systému Hybrid Synergy Drive, HSD), Honda Insight nebo Ford Escape Hybrid.

S prvním elektronicky ovládaným systémem CVT přišla společnost Fuji Heavy Industries skrze svou automobilku Subaru v roce 1987. Nacházela se v modelu Subaru Justy.

Spalovací motor s krouživým pístem (Wankel) - Tento typ spalovacího motoru se v automobilovém světě příliš neujal. V současné době ho ve větších sériích nabízí pouze japonská Mazda. Nové uplatnění však může najít v elektrických autech (resp. sériových hybridech) jako prodlužovač dojezdu nebo náhrada range extender.
Mazda v současné době nabízí rotační motory pro sportovní vozy modelové řady RX. Výroba spalovacích motorů s krouživým pístem pro omezenou sérii sportovních automobilů se však přestává finančně vyplácet. Do další generace sportovních vozů RX tak budou s největší pravděpodobností montovány pístové spalovací motory. Velkou šanci nabízejí elektrické vozy s range extenderem, které hledají kompaktní a tichou spalovací jednotku. Jednou z prvních instalací je elektrická Mazda 2 s elektromotorem o výkonu 75 kW. Range extender je volitelným rozšířením pro prodloužení dojezdu vozidla. Je řešen soustavou spalovacího motoru s krouživým pístem a generátoru. Spalovací motor (320 ccm, 22 kW) dokáže při konstantních otáčkách 4500 ot/min dodávat vozidlu 20 kW elektrické energie. Provozní režim s konstantní zátěží odbourá nevýhody těchto motorů – vysoká spotřeba benzínu a oleje a projevují se výhody, jako jsou malé rozměry a tichý chod bez vibrací. V čistě elektrické verzi s 20 kWh Li-Ion bateriemi má Mazda 2 dojezd až 200 km. U verze s range extenderem a 9l nádrží je možno počítat s dojezdem až 460 km. (o 100 km více než konkurenční BMW i3 s range extenderem). Soustava s generátorem elektrické energie i s nádrží má hmotnost 100 kg. Díky své kompaktnosti lze systém velmi jednoduše umístit do spodní části jakéhokoliv vozu. Automobil tak netratí nic z prostoru posádky nebo zavazadlového prostoru.

Pozn.: Pokud vezme v potaz průměrné ceny benzínu (35,-Kč/l) a cenu kWh elektrické energie (4,- Kč/kWh) můžeme si odvodit také náklady na jeden kilometr jízdy. Pokud nejsou technické údaje zavádějící, elektrická Mazda 2 s range extenderem dokáže jezdit už přibližně za 0,85 Kč/km.

Obr. 95 – Nákres zobrazuje sférický motor ve verzi range-extendéru. Foto: Innomotor AG

Pozn.: Prototyp sférického motoru o obsahu 1,18l má výkon 100HP při 3000 ot./min. a točivý moment 290 Nm. Váží 62 kg a skládá se z 62 součástek. Je uváděno, že jeho účinnost je možno zvýšit o dalších 40%.

Další zdroje

[8] Hüttlin Kugelmotor - geniální sférický motor pro hybridní auta, větrné elektrárny i domácnosti
[9] Bristol chystá hybridní supersport
[10] Mazda RX-9 dostane asi hybridní pohon od Toyoty
[12] Williams získal dotaci na rozvoj setrvačníkového rekuperátoru
[14] Test vodíkového auta Honda FCX Clarity
[15] Daimler a Linde postaví v Německu další vodíkové čerpadle stanice
[16] Svezli jsme se vodíkovým autobusem TriHyBus + rozhovor s vývojáři
[18] Autosalon Ženeva 2013: Audi A3 E-tron plug-in hybrid s výkonem 204 koní
[20] Volvo chce využívat systém KERS v běžných automobilech
[21] Porsche 911 bude mít setrvačník, jako Formule 1
[22] Setrvačník, inovativní řešení pro hybridní a elektrická vozidla, 2. díl
[23] Americký parlament nabídně dobíječky pro elektrická auta
[24] Evropa chce propojenou síť dobíjecích stanic pro elektromobily
[25] Tesla přidává nové superdobíječky na východním pobřeží USA
[26] Tesla Motors: dobíjení aut ze slunce a zcela zdarma!
[27] Baterie budoucnosti z Rakouska
[28] Černý křemík umožní výrobu levnějších solárních článků
[29] Nanotechnologie v Česku: pokročilé baterie i chytré nátěry
5 PALIVOVÉ ČLÁNKY

Čtenář se při studiu této kapitoly seznámí s historií palivových článků, jejich typy, principy funkci, vlastnostmi, topologií soustav, jejich výhodami a nevýhodami použití. Dále se seznámí se srovnáním s elektrochemickými zdroji elektrické energie a s motory s vnitřním spalováním.

Studium problematiky palivových článků je rozsáhlou oblastí zahrnující nejen aplikační úroveň s implementací měření a řízení těchto zdrojů elektrické energie ale také související oblasti elektrické technologie a materiálové technologie a bezpečnosti a rizik. Jejich vysoká účinnost a jednoduchost konstrukce je předurčuje pro budoucí aplikace distribuovaných energetických soustav. Teoretické a praktické znalosti této technologie mohou umožnit jejich využití v budoucím segmentu výroby těchto zdrojů elektrické energie či segmentu mobilních i stacionárních aplikací.

5.1. Historie

Po vynálezu dynama Wernerem von Siemensem palivový článek upadl částečně v zapomnění. První použitelný článek o výkonu 5 kW prezentoval jeho vynálezce Francis Thomas Bacon v roce 1959 [1], [2].

Zájem o aplikaci byl v 60. letech 20. století iniciován především díky kosmickému výzkumu. Palivový článek má proti jiným zdrojům výhodnější poměr energie/hmotnost. Byly jimi vybaveny kosmické lodi programu Gemini a Apollo a i současné raketoplány. Ódnapním produktem vodíkovo-kyslíkového článku je voda, která může být využita ve vodním režimu raketoplánu.

V roce 1866 vynalezl Werner von Siemens dynamo, které odsunulo palivový článek coby zdroj elektrického proudu na druhou kolej. Termín palivový článek jako první
použili Charles Langer a Ludwig Mond roku 1889, kdy se pokusili vyvinout článek využívající coby palivo svitípln. Tento článek však byl příliš drahý a to i přes zlepšení Williama Jacquese, který použil jako elektrolyt kyselinu fosforečnou. V roce 1932 konstruuje Francis Bacon první v praxi použitelný palivový článek, kdy jako elektrolyt slouží hydroxid draselný. Roku 1952 Francis Bacon již disponuje zdrojem o výkonu 5 kW. Harry Karl Ihrig sestrojil roku 1959 pro firmu Allis Chalmers traktor o výkonu 15 kW s AFC využívajícím KOH.

Obr. 96 – Stavebnice „Vodíkový jezdec“, demonstrační a výukový model sestavený z poskytované stavebnice

V květnu 2009 se účastní vozidlo Hydrogenix 3 soutěže Shell Eco Marathon v Lausitz v Německu. Vozidlo pro chybu pilota soutěž nedokončí. Na vozidle je však testován koncept vzdáleného řízení a ovládání vozidla napájeného PEM palivovým článkem Ballard Nexa s výkonem 1kW.
Obr. 97 – Test vozidla Hydrogenix 3 v dubnu 2009 na letištní ploše Letiště Ostrava Mošnov, vozidlo alternativně s vestavěnou BLDC pohonou jednotkou, stack palivového článku s namontovaným zvlhčovačem.

Obr. 98 – TriHyBus, vestavěný PEM palivový článek (Proton Motor).

V letech 2009-2012 tým techniků VŠB-TU Ostrava postupně realizuje malou serii diverzifikovaných prototypů elektromobilů s chassis a karosériemi roadsteru KAIPAN 14. Poslední ze čtyřech realizovaných prototypů umožňuje prodloužení dojezdu pomocí jednotky s PEM palivovým článkem Nedstack o výkonu 6kW.
Obr. 99 – KAIPAN VoltAge K3 při testech na podzim 2012, detail výměnného modulu jednotky prodloužení dojezdu s PEM palivovým článkem Nedstack 6kW

V roce 2013 je realizován techniky VŠB-TU Ostrava demonstrační automobil Jeep Wrangler s elektrickým pohonem a generátorem elektrické energie s palivovým článkem Ballard o výkonu 1kW.

Zájem NASA a energetická krize v roce 1973 posunuly vývoj palivových článků mnohem dál. Díky tomuto tlaku našly tyto články úspěšné uplatnění v různorodých dalších aplikacích.

5.2. Výhody a nevýhody palivových článků
Palivové články jsou obvykle srovnávány s motory s vnitřním spalováním a elektrochemickými akumulátory. Oproti těmto zdrojům energie však nabízí určité výhody, které bychom měli při výběru vhodného zdroje respektovat:
Palivové články (typu PEM FC) “zpracovávají” pouze čistý vodík. Pracují tedy bez znečišťujících látek. Produkty reakce jsou kromě elektrické energie také voda a teplo.

V případě, že palivové články využívají plynnou reformační směs bohatou na vodík, vznikají škodlivé zplodiny, avšak těchto zplodin je méně než těch, které vznikají v případě motorů s vnitřním spalováním využívajících jako zdroj energie konvenční fosilní paliva. Motor s vnitřním spalováním, které spalují směsi chudé na vodík a vzduch, jsou rovněž schopné dosáhnout nízké hladiny škodlivin, avšak u těchto strojů dochází současně ke spalování mazacího oleje, jehož následkem je nárůst škodlivých emisí.

Palivové články pracují s vyšší termodynamickou účinností než tepelné motory. Tepelné motory, jako jsou motory a turbíny s vnitřním spalováním, přeměňují chemickou energii na teplo prostřednictvím spalování a využívají toho, že teplo koná užitečnou práci. Optimální (Carnotova) termodynamická účinnost tepelného motoru je známa jako:

$$\eta_{MAX} = 1 - \frac{T_2}{T_1}$$

kde T1 je absolutní teplota vstupního (horkého) plynu (v °R či K), T2 představuje absolutní teplotu výstupního (chladného) plynu (v °R či K).

Tento vztah ukazuje, že se zvýšením teploty horkého plynu vstupujícího do motoru a se snížením teploty chladného plynu po expanzi se zvýší i termodynamická účinnost. Teoreticky lze tedy navýšit horní teplotu libovolným množstvím tepla dle požadované termodynamické účinnosti, zatímco dolní hranice teploty nemůže nikdy klesnout pod teplotu okolí. Avšak ve skutečných tepelných motorech je horní teplota limitována použitými materiály. Kromě toho motory s vnitřním spalováním mají vstupní teplotu rovnu pracovní teplotě, která je mnohem nižší než teplota vzplanutí (zářehu).
Poněvadž palivové články nepoužívají proces spalování, jejich účinnost není spjata s jejich maximální provozní teplotou. Výsledkem je, že účinnost přeměny energie může být výrazně větší než skutečná reakce spalování. Účinnost elektrochemické reakce není stejná jako celková účinnost. Účinnostní charakteristiky palivových článků ve srovnání s dalšími systémy generujícími elektrickou energii jsou znázorněny v obrázku 2-1.

Palivové články vykazují dobré dynamické charakteristiky. Stejně jako baterie jsou také palivové články pevná statická zařízení, která reagují na změny v elektrické zátěži nebo změnou mezi chemickými. Palivové články jsou však tvořeny především mechanickými součástkami. Každá součástka má svou vlastní dobu odezvy na požadované změny v zátěži. Ale palivové články, které pracují na čistý vodík, mají tendenci k vynikající celkové odezvě. Palivové články, které pracují s reformátem (nejčastěji palivo na bázi uhlovodíků) a využívají „palubní reformer“, mohou mít tuto dobu odezvy pomalou, zvláště při použití techniky parního reformingu (metoda zpracování reformátu nejčastěji za vzniku vodíku a oxidů uhlíku).

V případě použití palivových článků jako generátorů elektrické energie vyžadují tyto články méně energetických přeměn než tepelné motory. Jestliže budou použity jako

Obr. 100 – Srovnání účinnosti jednotlivých metod výroby elektrické energie

Teoretické maximum vodíkových palivových článků

Palivové články

Naftové

Elektrické

Parní a plynové

turbíny

Benzínové

Elektrické

Efficiency, % LHV

Elektrický výstupní výkon, kW
zdroje mechanické energie, potom požadují stejné množství přeměn, ačkoliv jednotlivé transformace se odlišují od těch, jež probíhají v případě tepelných motorů. Každá energetická přeměna je spojena se ztrátami energie, takže čím méně transformací se provádí, tím je lepší účinnost. Proto jsou palivové články vhodnější pro aplikace, které vyžadují jako výstupní produkt elektrickou energii než energii mechanickou. Srovnání transformací energie pro palivové články, baterie a tepelné motory ukazuje obrázek 2-2.

Palivové články jsou vhodné pro mobilní aplikace pracující při nízkých provozních teplotách (typické jsou teploty nižší než 100 °C/212 °F). To se stane výhodou, při které jsou vysoké teploty vykoupeny větší bezpečností a krátkým zahřívacím časem. Navíc termodynamická účinnost elektrochemické reakce je podstatně vyšší než účinnost přeměny energie chemických vazeb na energii elektrickou pomocí tepelných motorů. Nevýhodou se však jeví obtížný odvod odpadního tepla, který musí být zajištěn větším chladicím systémem, a i přes vysoké provozní teploty pomalý proces elektrochemické reakce. Navíc reformy pracující ve spojení s palivovým článkem vyžadují vyšší teploty, čímž se požadované zahřívací časy mohou dále prodloužit.

Obr. 101 – Srovnávání energetických transformací
poskytování elektrické energie) v závislosti na velikost nádrže s palivem a okysličovadlem. Palivové články mají nízké opotřebení a wysokou životnost (někteří výrobci udávají až desetitisíce hodin). Nejsou přítomny pohyblivé části, z čehož vyplývá tichý chod palivových článků a schopnost snášet i značná přetížení.

Proti klasickým elektrochemickým akumulátorům mají palivové články řadu výhod, především:
- vyšší dojezdová vzdálenost - jedná-li se aplikací v dopravních prostředcích.
- ekologická čistota - vyřazené palivové články nezatěžují životní prostředí těžkými kovy jako klasické např. olovněné akumuláéory.

Palivové články mají následující nevýhody. Vodík se velmi obtížně vyrábí a uskladňuje. Současné výrobní procesy jsou drahé a energeticky náročné, většinou je primární surovinou fosilní palivo. Efektivní infrastruktura dodávky vodíku nebyla dosud realizována.

Systémy uskladňující plynný vodík se vyznačují obrovskými rozměry a obtížným přizpůsobením energeticky nízké objemové hustotě vodíku. Systémy uskladňující tekutý vodík jsou mnohem menší a lehčí, ovšem musí být provozovány za kryogenních teplot. Možnost představuje také uskladnění vodíku pomocí uhlovodíků a alkoholů, odkud musí být uvolňován dle požadavku díky palubnímu reforméru. Je pravdou, že toto uskladnění a manipulace s vodíkem se tak výrazně zjednoduší, avšak některé ekologické výhody budou nenávratně ztraceny (právě díky využití uhlovodíků či alkoholů a s tím související emise COX).

Palivové články požadují čisté palivo, bez specifických znečišťujících látek. Tyto látky, jako jsou síra a uhlikové sloučeniny, či zbytková tekutá paliva (v závislosti na typu palivového článku), mohou poškodit katalyzátor palivového článku, čímž přestává samotný článek fungovat. V případě motorů s vnitřním spalováním nezpomaluje ani jedna z těchto škodlivých látek samotný proces spalování.

Palivové články využívající protonové membrány (PEM FC) nesmí vyschnout a musí být tedy vlhké i při uskladnění. Pokusy o start či provoz těchto článků s vyschlými membránami mohou vést ke zničení membrán.

5.3. Srovnání palivového článku s elektrochemickými akumulátory
Palivové články pracují tak dlouho, dokud jsou reaktanty do článku dodávány a reakční produkty z článku odváděny.

5.4. Srovnání palivového článku s motory s vnitřním spalováním
Palivové články se v mnohém podobají motorům s vnitřním spalováním. Jak palivové články, tak i motory s vnitřním spalováním užívají plynná paliva, jež jsou dodávána z vnějšího systému uskladnění paliva. Oba systémy zužitkovávají paliva bohatá na vodík. Palivové články zpracovávají čistý vodík či plynné reformační směsi. Pro motory s vnitřním spalováním je typické přímé použití pevných fosilních paliv obsahujících vodík, ačkoliv motory mohou být upraveny tak, že budou zpracovávat čistý vodík.

Oba systémy používají jako oxidant stlačený vzduch, v případě palivových článků obstarává kompresi vzduchu vnější (externí) kompresor. V případě motorů s vnitřním spalováním je vzduch stlačen uvnitř válce pohybem pístu. Oba systémy vyžadují chlazení, ale motory s vnitřním spalováním pracují za vyšších provozních teplot než palivové články.

V některých směrech se však palivové články zcela odlišují od motorů s vnitřním spalováním. U palivových článků probíhá reakce paliva s okysličovadlem na základě elektrochemického principu, avšak u motorů s vnitřním spalováním je podstatou reakce paliva s okysličovadlem spalování. Motory s vnitřním spalováním jsou mechanická zařízení, jež vyrábějí mechanickou energii, zatímco palivové články jsou pevná statická zařízení, která vyrábějí elektrickou energii (ačkoliv zařízení potřebná pro provoz palivového článku statická nejsou).

Účinnosti, energetické bilance a napětí palivového článku a chování těchto veličin v závislosti na jednotlivých činitelích jsou v důsledku úzkého vztahu těchto veličin palivového článku a elektrického hnacího zařízení uvedeny v úvodní části kapitoly “Pohony s palivovými články, palivové články”, přesněji v kapitole “Účinnost a napětí naprázdno palivového článku” a v kapitole “Pracovní napětí palivového článku”.

5.5. Princip funkce palivového článku
Palivový článek je zařízení umožňující přímou přeměnu chemické energie vázané v palivu na energii elektrickou, aniž by bylo potřeba tepelného či mechanického přechodného (transformačního) mezní stupně.

Energie se uvolňuje vždy, když dojde k chemické reakci paliva s kyslíkem ve vzduchu. V motorech s vnitřním spalováním probíhá reakce formou spalování a ve formě tepla se uvolňuje energie, která může být použita k vykonání užitečné práce při pohonu pístu. V palivovém článku probíhá reakce na elektrochemickém principu. Energie je uvolňována v kombinaci nízkonapěťové stejnosměrné elektrické energie a tepla. Elektrická energie může být použita k přímému konání práce, zatímco teplo může být pojato jako odpadní či může být zužitkováno.

V galvanických článkách umožňují elektrochemické reakce přeměnu chemické energie na energii elektrickou. Palivový článek (jakéhokoliv typu) je v podstatě galvanický článek, jako je elektrická baterie. V elektrolytických člancích se mění elektrická energie na energii chemickou, stejně jako se to děje v elektrolýzéru či galvanizéru.

Základním znakem palivových článků je závislost spotřeby vodíku a kyslíku na velikosti elektrického proudu procházejícího našením zátěží.

Termínem katoda označujeme elektrodu, na které se odehrává redukční reakce (nárůst záporného náboje chemických prvků a sloučenin) a termínem anoda označujeme elektrodu, na které probíhá oxidační reakce (nárůst kladného náboje chemických prvků a sloučenin). Při reakci v palivovém článku je katoda nabita kladně a anoda záporně. Při zpětné reakci, elektrolýze, se stává katoda elektricky záporná a anoda elektricky kladná. Elektrony protékají samovolně od elektricky záporného pólu k pólům elektricky kladnému.

V palivovém článku zásobují palivový a oxidační plyn přímo anodu a katodu, a to ve zmíněném pořadí. Fyzická struktura palivového článku je tedy taková, že plyny protékají kanálky po obou stranách elektrolytu. Elektrolýt je základem pro rozdělení palivových článků na jednotlivé druhy. Různé elektrolyty vedou různé druhy iontů. Elektrolyt může být jak kapalný, tak i pevný. Některé články pracují s vysokými provozními teplotami, některé s nízkými.
Nízkoteplotní palivové články vyžadují na rozdíl od vysokoteplotních článků katalyzátory, jež jsou tvořeny ušlechtilými (vzácnými) kovy, a to především platinou. Jejich úkolem je povzbuzení reakcí, které probíhají na elektrodách. Většina automobilových aplikací využívá nízkoteplotní pevný elektrolyt, jenž umožňuje vést vodíkové ioni, jak je ukázáno na obrázku 2-3.

Palivovému článku je současně dodáván palivový plyn (vodík ve formě molekul H\textsubscript{2} na straně anody) a okysličovadlo (kyslík ve formě molekul O\textsubscript{2}, vzduch na straně katody). Styk molekul vodíku H\textsubscript{2} s platinovým katalyzátorem vyvolá na povrchu protonové membrány reakci, při které dochází k rozkladu molekul vodíku nejprve na jednotlivé atomy H, které se následně štěpí na protony H+ a elektrony e−. Elektrony procházejí vnější elektrickou zátěží a jsou přijímány na katodové straně atomy kyslíku za vzniku iontu O2−, jež vznikly štěpením molekul kyslíku O\textsubscript{2} platinovým katalyzátorem. Membrána palivového článku je schopná propustit pouze kladně nabité vodíkové protony, jež jsou přitahovány kyslíkovými ioni na straně katody. Po průchodu vodíkového protonu membránou dochází na straně katody k reakci, do které vstupují vodíkové protony H+ a kyslíkový aniont O\textsubscript{2−}.

Palivové články mohou být prakticky provozovány s různými druhy palivových a oxidačních plynů. Vodík je již dlouhou dobu považován za nejefektivnější palivo pro praktické využití v palivových článcích, poněvadž má větší elektrochemickou reaktivitu (větší schopnost reakce) než ostatní paliva (uhlívodíky, alkoholy). Dokonce i palivové články, jež pracují přímo s palivy odsilnými od vodíku, rozkládají palivo nejprve na vodík a ostatní prvky, než dojde k samotné reakci. Kyslík je obvyklým výběrem při volbě oxidačních paliv díky své vysoké reakční schopnosti a procentuálnímu zastoupení ve vzduchu.

5.6. Typy palivových článků

Jednotlivé typy palivových článků se liší především typem použitého elektrolytu. Typ elektrolytu určuje provozní teplotu, jež se pro různé typy palivových článků výrazně liší.
Vysokoteplotní palivové články

Vysokoteplotní palivové články pracují při teplotách vyšších než 600 °C. Tyto vysoké teploty umožňují samovolný vnitřní reforming lehkých uhlovodíkových paliv – jako je metan – na vodík a uhlík za přítomnosti vody. Reakce probíhající na anodě za podpory niklového katalyzátoru poskytuje dostatek tepla požadovaného pro proces parního reformingu.

Vnitřní reforming odstraňuje potřebu samostatného zařízení na zpracování paliva a umožňuje palivovému článku zpracovávat i jiná paliva než čistý vodík. Tyto významné výhody vedou k nárůstu celkové účinnosti tématrž o 15 %. Během následujícího elektrochemické reakce je uvolňována chemická energie, již palivový článek zpracovává. Tato chemická energie pochází z reakce mezi vodíkem a kyslíkem, při které vzniká voda, a z reakce mezi oxidem uhelnatým a kyslíkem, jejímž produktem je oxid uhličitý.

Vysokoteplotní palivové články produkují také vysokopotenciální odpadní teplo, jež může být použito pro účely kogenerace.

Vysokoteplotní palivové články reagují velmi jednoduše a účinně bez potřeby drahých katalyzátorů z ušlechtilých kovů, jakým je například platina. Na druhou stranu množství energie uvolněné při elektrochemické reakci klesá s rostoucí provozní teplotou článku.

Vysokoteplotní palivové články však trpí některými materiálovými poruchami. Jen málo materiálů je schopno pracovat po dlouhou dobu bez degradace při vystavení vysokým teplotám. Navíc vysokoteplotní provoz není vhodný pro rozsáhlé výrobny a pro aplikace, ve kterých se požaduje rychlý start zařízení. Proto zaměřujeme současné aplikace s vysokoteplotními palivovými články na stacionární elektráreňské zdroje, ve kterých účinnost vnitřního reformingu a výhody využití kogenerace převažují nad nevýhodami poruchovostí použitých materiálů a pomalých startů.

Nejvýznamnějšími vysokoteplotními palivovými články jsou:

- palivové články s elektrolytem na bázi tekutých uhličitanů (MCFC – Molten Carbonate Fuel Cell),
- palivové články s elektrolytem na bázi pevných oxidů (SOFC – Solid Oxide Fuel Cell).

Nízkoteplotní palivové články

Nízkoteplotní palivové články pracují obvykle s teplotami nižšími než 250 °C (480 °F). Tyto nízké teploty neumožňují vnitřní reforming paliva, v důsledku čehož vyžadují nízkoteplotní palivové články vnější zdroj vodíku. Na druhou stranu vyhovují rychlém zařízení a trpí menší poruchovostí konstrukčních materiálů. Jsou také mnohem vhodnější pro aplikace v dopravě (pro dopravní prostředky).

Nejvýznamnějšími nízkoteplotními palivovými články jsou:

- alkalické palivové články (AFC – Alkaline Fuel Cell),
- palivové články s elektrolytem na bázi fosforečné (PAFC – Phosphoric Acid Fuel Cell),
- palivové články s protonovou membránou (PEM FC – Proton Exchange Membrane Fuel Cell),
- palivové články s přímým zpracováním methanolu (DMFC – Direct Methanol Fuel Cell).
5.6.1 Palivové články s elektrolytem na bázi tekutých uhličitanů (MCFC)

Palivové články s elektrolytem na bázi tekutých uhličitanů využívají elektrolytu, jež je schopný vést uhličitanové ionty (CO$_3^{2-}$) od katody k anodě. Směr pohybu se jeví zde opačný oproti většině nízkoteplotních palivových článků, které vedou vodíkové ionty od anody ke katodě.

Elektrolyt se skládá z roztavené směsi uhličitanu lithia a uhličitanu draselného. Tato směs je udržována pomocí kapilárních sil v keramické podpůrné krystalické mřížce (matrici) z hlinitanu lithia (lithného). Při provozní teplotě palivového článku dochází k tomu, že struktura elektrolytu se změní v jakousi pastu, jež umožňuje úniky plynů na okrajích článku.

Palivové články na bázi tekutých uhličitanů pracují s teplotami okolo 650 °C a s tlaky v rozmezí 1 až 10 barů relativních (15 až 150 psig). Každý článek je schopný produkovat stejnosměrné napětí mezi 0,7 a 1 V.

Obr. 103 – Palivový článek s elektrolytem na bázi roztavených uhličitanů (MCFC)

Výhody a nevýhody MCFC článků:
- Výhody palivových článků na bázi roztavených uhličitanů (MCFC):
 - Podpora samovolného vnitřního reformingu lehkých uhlovodíkových paliv.
 - Výroba vysokopotenciálního tepla.
 - Vysoká kinetika reakce (reakce probíhají rychle).
 - Vysoká účinnost reakce.
 - Nepotřebují katalyzátory z ušlechtilých kovů.

Nevýhody MCFC článků:
- Požadavek na vyvinutí vhodných materiálů, jež jsou odolné vůči korozí a mají malý součinitel teplotní objemové roztažnosti, jsou vysoce mechanicky a tepelně odolné a jejich výroba je již technicky zvládnuta.
- Koroze je nejdůležitější problém MCFC článků. Může způsobit oxidaci niklu katody, jeho rozpuštění v elektrolytu, únik elektrolytu, vysušení či zaplavení elektrod. Všechny tyto korozní vlivy způsobují pokles výkonu, zkrácení životnosti článku a mohou vyústit v selhání článku. Využívání platinového katalyzátoru umožňuje překonat některé z těchto problémů, avšak snižuje důležitou výhodu úspory investičních nákladů.
- Rozměrová nestálost může způsobit zničení elektrod, jež změní povrch aktivní oblasti, což může způsobit ztrátu kontaktu a vysoký odpor mezi jednotlivými částmi článku.
- Mají tekutý elektrolyt, což přináší problémy s manipulací článku.
- Požadují značně dlouhou dobu na rozehřátí (rozběh).

Reakce
Palivové články na bázi roztavených uhličitanů jsou schopné provozu při zásobování jak čistým vodíkem, tak i lehkými uhlovodíkovými palivy. Když je uhlovodík, jako například metan, dopraven na anodě, přijme teplo a podstoupí reakci parního reformingu:

\[(2.2) \quad CH_4 + H_2O \Rightarrow 3 H_2 + CO\]

Pokud bude jako palivo použit jiný lehký uhlovodík, potom se může počet molekul vodíku a oxidu uhelnatého změnit, ale produkty reakce jsou v podstatě vždy stejné.

Reakce na anodě:

\[(2.3) \quad H_2 + CO_3^{2-} \Rightarrow H_2O + CO_2 + 2 e^-\]

Tato reakce molekuly vodíku s uhličitanovým iontem probíhá bez ohledu na druh použitého paliva.

\[(2.4) \quad CO + CO_3^{2-} \Rightarrow 2 CO_2 + 2 e^-\]

Toto je reakce oxidu uhelnatého s uhličitanovým iontem, jež se vyskytuje pouze v případě použití uhlovodíkového paliva.

Reakce na katodě:

\[(2.5) \quad 1 O_2 + 2 CO_2 + 4 e^- \Rightarrow 2 CO_3^{2-}\]

Tato reakce kyslíku s oxidem uhličitým probíhá bez ohledu na druh použitého paliva. CO_3^{2-} iont prochází elektrolytem od katody k anodě. Dochází k reakci iontu CO_3^{2-} jak s vodíkem, tak i oxidem uhelnatým. Elektrony procházejí přes elektrickou zátěž nacházející se ve vnější části elektrického obvodu od anody ke katodě. Spojením reakcí na anodě a katodě získáme celkové reakce článku, které jsou:

\[(2.6) \quad 2 H_2 + O_2 \Rightarrow 2 H_2O\]

Tento zápis představuje reakci vodíku s kyslíkem, jež probíhá bez ohledu na druh použitého paliva.

\[(2.7) \quad CO + \frac{1}{2} O_2 \Rightarrow CO_2\]

Toto je výsledná reakce oxidu uhelnatého (oxidu uhelnatého s kyslíkem), ke které dochází pouze v případě použití uhlovodíkového paliva.
Produktem tohoto palivového článku je, bez ohledu na použité palivo, voda. V případě použití uhlovodíkového paliva je kromě vody produktem také oxid uhličitý. Aby byla zajištěna kvalita elektrochemické reakce, musí být oba produkty (voda a oxid uhličitý) plynule odváděny z katody článku.

5.6.2 Palivové články s elektrolytem na bázi pevných oxidů (SOFC)

Tyto palivové články používají elektrolyt, který je schopný vést kyslíkové ionty O$_2^-$ od katody k anodě. Tento princip je opačný k principu většiny nízkoteplotních palivových článků, jež vedou vodíkové ionty od anody ke katodě. Elektrolyt se skládá z pevných oxidů, obvykle zirkonia (stabilizovaného dalšími oxidy kovů vzácných zemin jako je ytrium), které mají podobu keramiky.

Tyto palivové články jsou sestaveny na stejném principu jako čipy počítačů postupným ukládáním různých vrstev materiálu. Běžná uspořádání používají trubicové či plchové tvary jednotlivých článků. Tvary ovlivňují plochu (povrch) článku a také výrazně velikost těsnění článku, a to nejen v důsledku průsaku mezi kanály paliva a oxidantu, ale také vlivem elektrického zapojení jednotlivých článků do bloku. Pro materiál elektrod mohou být použity kovy typu nikl a kobalt.

Palivové články SOFC pracují s teplotami okolo 1 000 °C (1 830 °F) a tlaky okolo 1 baru relativního (15 psig). Každý palivový článek je schopen vyrobit stejnosměrné napětí o velikosti 0,8 až 1,0 V.

Obr. 104 – Palivové články na bázi pevných oxidů (SOFC) – trubkový tvar (tubulární)
Obr. 105 – Schéma možného uspořádání trubkových vysokoteplotních palivových článků typu SOFC, které nevyžaduje speciální vysokoteplotní utěsnění

Výhody SOFC palivových článků:
- Umožnění samovolného vnitřního reformingu uhlovodíkových paliv, poněvadž ionty kyslíku – lépe než vodíkové ionty – procházejí skrz elektrolyt. Tyto palivové články mohou být v principu použity k oxidaci plynného paliva.
- Pracují stejně dobře jak s vlhkými, tak i suchými palivy.
- Produkují vysokopotenciální odpadní teplo.
- Mají velkou kinetiku reakce (rychlý průběh reakce).
- Vykazují vysokou účinnost.
- Mohou pracovat s vyšší proudovou hustotou než MCFC články.
- Obsahují pevný elektrolyt, díky čemuž se vyhýbají problému s manipulací tekutin.
- Možnost výroby v rozličných tvarech a uspořádáních.
- Nepotřebují katalyzátor z ušlechtilých kovů.

Nevýhody SOFC palivových článků:
- Nutnost vývoje vhodných materiálů, které mají požadovanou vodivost jak elektrickou, tak tepelnou, a které zachovávají pevné skupenství i při vysokých teplotách, jsou chemicky slučitelné (kompatibilní) s ostatními částmi článku, jsou rozměrově stálé, mají vysokou mechanickou odolnost a jejichž výroba je dostatečně technicky zvládnutá. Mnoho materiálů je možno použít pro vysoké teploty, aniž by změnily svoje skupenství na jiné než pevné. Vybrané materiály musí být dostatečně husté, aby zabránily promíchávání paliva s oxidačními plyny, a musí mít dostatečnou podobnost charakteristik tepelných roztažností, aby nedošlo k jejich štěpení na vrstvy a k jejich praskání během tepelného cyklu.
články atraktivní pro využití těžkých paliv. Nadbytek síry v palivu snižuje výkon palivového článku.

- Technologie SOFC článků ještě není dostatečně vyspělá.

Reakce

Palivové články mohou stejně jako MCFC články pracovat jak s čistým vodíkem, tak i s uhlovodíkovými palivy. Vstupní palivo se potom skládá jak z vodíku, tak i z oxidu uhelnatého.

Reakce na anodě jsou následující:

\[
(2.8) \quad \text{H}_2 + \text{O}^2- \Rightarrow \text{H}_2\text{O} + 2 \text{e}^-
\]

Tato reakce (reakce vodíkové molekuly s kyslíkovým iontem) probíhá bez ohledu na druh použitého paliva.

\[
(2.9) \quad \text{CO} + \text{O}^2- \Rightarrow \text{CO}_2 + 2 \text{e}^-
\]

K reakci oxidu uhelnatého s kyslíkovým iontem dochází pouze v případě použití uhlovodíkového paliva.

Reakce na katodě:

\[
(2.10) \quad \frac{1}{2} \text{O}_2 + 2 \text{e}^- \Rightarrow \text{O}^2-
\]

Toto je kyslíková reakce, jež probíhá bez ohledu na druh použitého paliva.

Iont O\(^2-\) prochází elektrolytem od katody k anodě vlivem chemické přitažlivosti vodíku a oxidu uhelnatého, zatímco uvolněné elektrony procházejí vnějším elektrickým obvodem od anody ke katodě. V tomto případě se ionty pohybují od katody k anodě, což je opačný pohyb než probíhá u většiny nízkoteplotních palivových článků. Produkty reakcí se tedy hromadí spíše na anodě než na katodě.

Na základě spojení reakcí na anodě a katodě můžeme psát výsledné reakce článku:

\[
(2.11) \quad \text{H}_2 + \frac{1}{2} \text{O}_2 \Rightarrow \text{H}_2\text{O} \\
(2.12) \quad \text{CO} + \frac{1}{2} \text{O}_2 \Rightarrow \text{CO}_2
\]

Takto vypadá reakce oxidu uhelnatého s kyslíkem (2.12), jež probíhá v případě použití uhlovodíkového paliva.

Palivové články SOFC tedy produkují vodu, bez ohledu na použité palivo, a oxid uhličitý v případě použití uhlovodíkového paliva. Pro zachování kvality reakce musí být oba druhy reagentů (voda a oxid uhličitý) plynule odnášeny z katody.

5.6.3 Alkalické palivové články

Alkalické palivové články pracují s elektrolytem, jenž je schopný větš prochází elektrolytem od katody k anodě. I tento typ větší vodíků (OH\(^-\)) od katody k anodě. Líčící neobsahuje hydroxidové ionty (OH\(^+\)) od katody k anodě.

Elektrolyt je obvykle složen z roztavené alkalické směsi hydroxidu draselného (KOH). Elektrolyt může být jak pohyblivý, tak i pevný (statický, nepohyblivý).

Palivový článek s pohyblivým alkalickým elektrolytem využívá tekutého elektrolytu, jenž plynule obíhá mezi elektrodami. Produkovaná voda a odpadní teplo ohřívají tekutý elektrolyt a postupně jsou s jeho obíháním odváděny z článku.
Palivové články s nepohyblivým elektrolytem používají elektrolyt skládající se z tuhé hmoty, jež je udržována pohromadě pomocí kapilárních sil uvnitř porézní podpůrné krystalické mřížky, která je tvořena například azbestem. Hmota samotná zajišťuje těsnění proti úniku plynů na okraji článku. Produkovaná voda se odpařuje do proudu zdrojového vodíkového plynu na straně anody, kde současně dochází k její kondenzaci. Odpadní teplá je odváděna přes obíhající chladivo.

Alkalické palivové články pracují s teplotami od 65 do 220 °C (od 150 do 430 °F) a s tlaky okolo 1 baru relativního (15 psig). Každý článek je schopný vytvářet stejnosměrné napětí mezi 1,1 až 1,2 V.

Obr. 106 – Alkalický palivový článek

Výhody AFC článků:
- Nízká provozní teplota.
- Rychlé startovací časy (při teplotě rovné teplotě okolí jsou schopny dodat 50 % jmenovitého výkonu).
- Vysoká účinnost.
- Spotřeba minimálního množství platinového katalyzátoru či vůbec žádná jeho potřeba.
- Minimální koroze konstrukčních materiálů.
- Relativně jednoduchý provoz.
- Malá hmotnost a objem (rozměry).

Nevýhody AFC článků:
- Obsahují tekutý elektrolyt, s čímž souvisejí problémy s manipulací článků.
- Požadují složitý systém vodního hospodářství.
- Mají relativně krátkou životnost.

- **Reakce**

Alkalické palivové články musí pracovat pouze s čistým vodíkem bez příměsi oxidů uhlíku.

Reakce odehrávající se na anodě:
(2.13) \(H_2 + 2 K^+ + 2 OH^- \rightarrow 2 K + 2 H_2O \)
(2.14) \(2 K \rightarrow 2 K^+ + 2 e^- \)

Reakce na katodě jsou následující:
(2.15) \(\frac{1}{2} O_2 + H_2O \rightarrow 2 OH^- \)
(2.16) \(2 OH^- + 2 e^- \rightarrow 2 OH^- \)

Hydroxidové iony \(OH^- \) procházejí elektrolytem od anody ke katodě vlivem chemické přitažlivosti mezi vodíkem a kyslíkem, zatímco elektrony jsou obíhat vnějším elektrickým obvodem od anody ke katodě.

Sloučením anodových a katodových reakcí můžeme napsat celkové reakce pro alkalický palivový článek:
(2.17) \(H_2 + 2 OH^- \rightarrow 2 H_2O + 2 e^- \)
(2.18) \(\frac{1}{2} O_2 + H_2O + 2 e^- \rightarrow 2 OH^- \)

Alkalický palivový článek produkuje vodu, jež se odpařuje do proudu vstupujícího vodíku (v případě systémů s nepohyblivým elektrolytem) či je odváděna z palivového článku s elektrolytem (u systémů s pohyblivým elektrolytem). Pro zachování kvality reakce musí být tato voda z článku odváděna plynule.

5.6.4 Palivové články s elektrolytem na bázi kyseliny fosforečné (PAFC)

Palivové články s elektrolytem na bázi kyseliny fosforečné (PAFC) mají elektrolyt, který je schopný vést vodíkové iony (protony) \(H^+ \) od anody směrem ke katodě. Jak vyplývá z názvu, elektrolyt je složen z tekuté kyseliny fosforečné, která je součástí karbidu křemíku (některé palivové články s elektrolytem na bázi kyseliny fosforečné používají kyselinu sírovou).

PAFC články pracují při teplotách od 150 do 205 °C s tlakem okolo 1 baru relativního (15 psig). Každý článek je schopný vyrobit stejnosměrné napětí o velikosti 1,1 V.

Výhody PAFC článků:
- Jsou schopny snést vysoký obsah oxidu uhlíčitého v palivu (až 30 %), a proto PAFC články nevyžadují čištění vzduchu jako okysličovadla a reformátu jako paliva.
- Pracují při nízkých provozních teplotách. Tyto teploty jsou však vyšší než u ostatních nízkoteplotních palivových článků. Díky tomu produkují odpadní teplo o vyšším potenciálu, které může být využito v kogeneračních aplikacích.
- Mají stálé charakteristiky elektrolytu (např. teplotní roztažnost či mechanická odolnost) s nízkou proměnlivostí dokonce i při provozních teplotách kolem 200 °C (392 °F).
Nevýhody PAFC článků:
- Snosou pouze 2 % obsahu oxidu uhelnatého v palivu.
- Jsou citlivé na obsah sloučenin síry v palivu. Maximální obsah síry by neměl přesáhnout 50 ppm.
- Využívají korozivní tekutý elektrolyt při mírných teplotách, což vede k problémům spojeným s korozí konstrukčních materiálů.
- Mají tekutý elektrolyt, s čímž jsou spjaty problémy s manipulací článku a s postupným odpařováním elektrolytu v průběhu života článku.
- Umožňují produktové vodě vstupovat do elektrolytu a zřeďovat jej.
- Jsou velké a těžké.
- Nejsou schopny samostatného reformingu uhlovodíkových paliv.
- Musí být zahřáni předtím, než budou uvedeny do provozu, či musí být trvale udržovány na provozní teplotě.

Reakce

U PAFC článků reaguje vodík s kyslíkem. Reakci na anodě můžeme popsat následovně:

(2.19) \[H_2 \Rightarrow 2 \ H^+ + 2 \ e^- \]

Reakci probíhající na katodě potom:

(2.20) \[\frac{1}{2} \ O_2 + 2 \ e^- + 2 \ H^+ \Rightarrow H_2O \]
Proton vodíku prochází elektrolytem od anody směrem ke katodě na základě přitažlivosti mezi vodíkem a kyslíkem, zatímco elektrony jsou nuceny procházet vnějším elektrickým obvodem v opačném směru. Sloučením anodové a katodové reakce získáme obecnou reakci pro článek, kterou můžeme popsat:

$$(2.21) \; H_2 + \frac{1}{2} O_2 \Rightarrow H_2O$$

PAFC články tedy produkují vodu, která se hromadí na katodě. Abychom zajistili dostatečnou kvalitu reakce, musí být produktová voda postupně odváděna z palivového článku.

Pozn.: Nové formy palivových článků s elektrolytem na bázi kyselin využívají pevných kyselinových elektrolytů. Tyto články jsou vyrobeny ze sloučenin typu CsHSO₄, pracují s teplotami až do 250 °C a s napětím naprázdno (otevřeného obvodu) 1,11 V DC. Dále nabízejí výhody provozu bez vlhkosti, při zmírnění citlivosti na oxid uhelnatý a možnosti samostatného reformingu metanolu. Trpí však degradací vlivem obsahu síry, velikou houževnatostí (tvárností) při teplotách nad 125 °C a rozpustností ve vodě. Výrobní techniky pro praktické využití nebyly ještě vyvinuty.

5.6.5 Palivové články s protonovými membránami (PEM FC)

Palivové články s protonovými membránami (nebo též články s pevným polymerem) používají elektrolyt, jenž je schopný vést protony H⁺ od anody ke katodě. Elektrolyt je vytvořen z pevného polymerického filmu, který se skládá z okyseleného teflonu. Palivové články typu PEM pracují obvykle s teplotami mezi 70 až 90 °C a tlaky mezi 1 až 2 bary relativními (15 až 30 psig). Každý článek je schopný vygenerovat napětí okolo 1,1 V DC.

![Obr. 108 – Palivový článek s protonovou membránou (PEM FC)](image)

Výhody PEM FC článků:
- Relativně dobře snášejí vysoký obsah oxidu uhličitého jak v palivu, tak i v okysličovadlu. Proto mohou palivové články typu PEM pracovat s nečištěným vzduchem jako okysličovadlem a reformátem jako palivem.
- Pracují s nízkými teplotami, což značně zjednodušuje požadavky na použité materiály, poskytuje rychlý start a výrazně zvyšuje bezpečnost palivového článku.
- Používají pevný suchý elektrolyt, což eliminuje nároky na manipulaci s tekutinami (jak tomu bylo u předchozího typu palivového článku), snižuje pohyb elektrolytu a problémy spojené s jeho doplňováním.
- Elektrolyt je navíc nekorozivní, čímž jsou sníženy problémy související s korozí materiálů a narůstá bezpečnost provozu palivového článku.
- Mají vysoké článkové napětí, vysokou proudovou a energetickou hustotu.
- Pracují při menších tlacích, což zvyšuje jejich bezpečnost.
- Mají vysokou snášenlivost na proměnnost tlaku reagujících plynů.
- Jsou kompaktní a mechanicky odolné.
- Mají relativně jednoduché tvary.
- Využívají stabilní konstrukční materiály.

Nevýhody PEM FC článků
- Jsou citlivé na obsah oxidu uhelnatého v palivu (maximální mez činí 50 ppm).
- Jsou schopné snést pouze několik ppm sloučenin síry.
- Vyžadují zvlhčování reakčního plynu. Zvlhčování je energeticky náročné a způsobuje nárůst rozměrů celého systému. Použití vody pro zvlhčování plynů limituje provozní teplotu palivového článku na hodnotu nižší, než je teplota bodu varu vody, čímž se výrazně redukuje potenciál využitelný v kogeneračních aplikacích.
- Používají drahé platínové katalyzátory.
- Používají drahé membrány, se kterými se navíc obtížně pracuje.

Reakce

V palivových článcích typu PEM spolu reagují vodík a kyslík. Reakci probíhající na anodě můžeme popsat následovně:

$$\text{(2.22)} \quad H_2 \Rightarrow 2H^+ + 2e^-$$

Reakci na katodě můžeme zaznamenat:

$$\text{(2.23)} \quad \frac{1}{2}O_2 + 2e^- + 2H^+ \Rightarrow H_2O$$

Proton H^+ prochází elektrolytem od anody ke katodě vlivem vzájemné přitažlivosti mezi vodíkem a kyslíkem, zatímco elektrony jsou využity k oběhu od anody ke katodě přes vnější elektrický obvod.

Sloučením reakcí na anodě a katodě získáme celkovou reakci pro PEM FC článek, kterou můžeme zapsat:

$$\text{(2.24)} \quad H_2 + \frac{1}{2}O_2 \Rightarrow H_2O$$

PEM FC články produkují vodu, která se hromadí na katodě. Tato produktová voda musí být plynule odváděna z článku, aby byla zajištěna kvalita dalšího průběhu reakce.
5.6.6 Palivové články s přímým zpracováním metanolu (DMFC)
Palivové články typu PEM mohou být také provozovány při náhradě vodíku metanolem. Ačkoliv energie uvolněná při této reakci je nížší než v případě použití čistého vodíku, systém uskladnění paliva je mnohem jednodušší, čímž zároveň obcházíme potřebu výroby vodíku. V palivových článcích typu PEM využívajících methanol se články zásobují tekutou směsí metanolu a vody na straně anody a vzduchem na straně katody. Na straně anody - při 130 °C - katalyzátor z ušlechtilého kovu okamžitě rozkládá metanol dle následující reakce:
\[(2.25) \text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow 6 \text{H}^+ + \text{CO}_2 + 6 \text{e}^-\]
Na straně katody kyslík, ze vzduchu, ionizuje a reaguje s vodíkem za vzniku vody:
\[(2.26) \frac{3}{2} \text{O}_2 + 6 \text{e}^- + 6 \text{H}^+ \rightarrow 3 \text{H}_2\text{O}\]
Sloučením těchto dvou reakcí získáme výslednou reakci pro palivový článek typu PEM využívající metanol:
\[(2.27) \text{CH}_3\text{OH} + \frac{3}{2} \text{O}_2 \rightarrow 2 \text{H}_2\text{O} + \text{CO}_2\]
Tato technologie je prozatím stále ještě ve vývoji, avšak slibuje velkou budoucnost, zvláště pro miniaturní a mobilní aplikace.

5.7. Konstrukce a vlastnosti palivových článků typu PEM
Jednotlivé palivové články mají maximální provozní výstupní napětí přibližně 1 V DC. Podstatné větších napětí a výkonů je dosaženo spojením několika článků sériově, čímž vznikne palivový článek (Stack). Pro různé aplikace jsou používány různé tvary palivových článků (Stacků - různé rozměry, různá množství článků).
Fyzicky je každý palivový článek vytvořen z membránového uskupení (MEA - Membrane Electrode Assembly), jež se skládá z anody, katody, elektrolytu a katalyzátorů. Všechny části jsou umístěny mezi dvěma deskami vyrobenými z grafitu a označovanými jako bipolární desky (Flow Field Plates, desky s kanálky pro rozvod plynů, paliva a okysličovadla). Tyto desky rozvádějí palivo a okysličovadlo k jednotlivým stranám membránového uskupení (MEA). Membránové uskupení (MEA) a desky s rozvodními kanálky (Flow Field Plates) budou detailně probírány v následující kapitole.

Chladivo se používá k regulaci reakční teploty palivového článku. Pro snadnější regulaci jsou mezi každý palivový článek umístěny chladicí desky. Tyto chladicí desky rozvádějí chladivo uvnitř palivového článku za účelem absorpce či dodávky požadovaného tepla. Těsnění mezi grafítovými deskami zajišťuje, aby se proud okysličovadla, paliva a chladiva uvnitř palivového článku nikdy nepromíchal.
Elektrické desky (koncové elektrody článku) jsou umístěny na úplných koncích do série řazených bipolárních desek (Flow Field Plates). Tyto desky se spojují se svorkami, ze kterých je získávána elektrická energie palivového článku (Stacku).

V případě velkých palivových článků musí být jednotlivé desky stlačeny a sešroubovány dohromady pomocí týčí, či spojeny jiným mechanickým způsobem. Návrh palivových článků používaných v současné době se zaměřuje na dosažení vysokého výkonu na jednotku plochy membrány, redukování neužitečné plochy membrány a upravení celého palivového článku tak, aby byl vhodný pro jeho zamýšlené využití. Dalším cílem je eliminace kritických míst článku, kterými jsou
veškerá těsnění, odchylky ve tvaru kanálků v deskách s rozvodnými kanálky (Flow Field Plates) a místa spojení článků. Stejně jako je tomu u ostatních komerčních produktů, také v případě palivového článku musí být tato technologie místně a časově dostupná, vyrobitelná a ekonomicky schůdná s dlouhou provozní životností.

Membránové uskupení (MEA – Membrane Electrode Assembly)

Membránové uskupení je srdcem palivového článku. Skládá se z tuhé polymerické elektrolytické membrány, jež je vtěsnána mezi dvěma porézními uhlikovými elektrodami.

Obr. 109 – Základní uspořádání palivového článku typu PEM

Elektrody

Elektrody zprostředkovávají přechod mezi deskami s rozvodnými kanálky (Flow Field Plates) a elektrolytem. Musí umožnit průnik vlhkým plynnům, poskytnout reakční povrch v místě styku s elektrolytem, musí být vodivé pro volné elektrony, jež protékají od anody ke katodě, a musí být zkonstruovány ze vzájemně slučitelných materiálů.

- **Elektrolyt**

Tuhý polymerický elektrolyt je základní rozdělávací charakteristikou palivových článků s protonovými membránami. Elektrolyt tvoří tenká membrána z plastového filmu, jejíž tloušťka je obvykle od 50 do 175 μm (mikronů). Tyto membrány se skládají z fluorid dotovaných siřičitanových kyselin, které stejně jako teflonové fluoro-uhlíkové polymery mají řetězec končící zbytkem kyseliny siřičité (-SO$_3$$_2$-). Palivové články s protonovými membránami používají totiž kyselý elektrolyt stejně jako palivové články s elektrolytem na bázi kyselin fosforečné.

Obr. 110 – Membránová uskupení palivových článků typu PEM (MEA – Membrane Electrode Assembly)

Všechny kyselé pevné elektrolyty vyžadují přítomnost molekul vody pro vodivost vodíkových iontů (protonů), poněvadž vodíkové ionty se pohybují společně s molekulami vody v průběhu výměnné iontové reakce. Podíl vody k vodíkovým iontům u efektivní vodivosti je obvykle okolo 3:1. Z tohoto důvodu musí být plyny v kontaktu s membránou nasycené vodou pro lepší funkci palivového článku.
Obr. 111 – Tuhá elektrolytická membrána pro palivové články typu PEM kanadské firmy Ballard

Na molekulární úrovni má polymer trubicovitou strukturu, ve které jsou skupiny siřičitanových kyselin na vnitřním povrchu trubic. Tyto skupiny poskytují hydrofilní (mají příchylnost k vodě, lehce smáčitelné) potrubí pro vedení vody. Vnější části trubic jsou z hydrofobního fluorovaného materiálu. Trubkovité struktury se scvrkávají a přeskupují s poklesy obsahu vody. Při stlačování (zužování) těchto trubek během dehydratace rapidně klesá vodivost, což vede k nárůstu odporu kontaktu mezi membránou a elektrodou. To může vést až k prasklinám a dírám v membráně.

- **Bipolární desky (Bipolar Plates, v současnocti spíše Flow Field Plates)**

Bipolární desky rozvádějí palivo a okysličovadlo na obou vnějších stranách membránového uskupení. Každá z těchto desek obsahuje kanálky serpentinovitého tvaru, které maximalizují kontakt plynu s membránovým uspořádáním. Specifický tvar kanálků pro plyn je kritický pro homogenní výrobu elektrické energie, stálý výkon článku a správnou funkci vodního hospodářství článku. Tvary bipolárních desek jsou vyráběny v závislosti na použití palivových článků.

Každá deska musí být elektricky vodič. Proud vznikající během elektrochemické reakce může těci z jednoho článku do druhého až k postranním deskám, ze kterých je elektrická energie odebírána do vnějšího elektrického obvodu. Desky se obvykle vyrábějí z grafitu (uhlíku), přičemž kanálky jsou vyrobeny technologií obrábění nebo lisování. Grafit se upřednostňuje jako materiál pro svou vynikající vodivost, nízkou kontaminaci a relativně nízké náklady.
Chladící desky, umístěné mezi jednotlivými palivovými články, nejsou samostatné, ale jsou obvykle začleněny do bipolární desek. Kanály pro chladivo jsou navrženy v souladu s efektivním tepelným hospodářstvím. Bipolární a chladící desky, včetně plynových vstupů a vstupů chladícího média, zásobují palivový článek palivem, okysličovadlem a chladivem. Těsnění mezi grafitovými deskami zajišťuje, aby nedošlo k vzájemnému promíšení těchto médií.

Zvlhčovače

Musíme brát na zřetel potřebu zvlhčování reakčních plynů v palivových článcích. Bez potřebného zvlhčení nedosáhneme požadované iontové vodivosti a může dojít ke zničení palivového článku.

Množství vody, které dokáže plyn pojmout, je výrazně závislé na teplotě při zvlhčování – zejména při nízkých tlacích. Teplejší plyny jsou schopny pojmout více vody než plyny studené.

Cílem zvlhčování je nasytit reakční plyny co největším množstvím vodních par. Plyn musí být zvlhčován při provozní teplotě palivového článku (v blízkosti, jež je dána teplotou chladícího média). Při zvlhčování za vyšších teplot může část vodních par (v důsledku poklesu teploty při vstupu do palivového článku) v palivovém článku kondenzovat.

Obr. 112 – Bipolární deska (Flow Field Pleates) palivového článku typu PEM

Vnitřní (interní) zvlhčovače se skládají z přídavných sérií grafitových desek začleněných do palivového článku. Tímto dochází k rozdělení bloku palivového článku na aktivní část (sekcí), která obsahuje palivové články, a neaktivní část, jež obsahuje desky zvlhčovače. Desky zvlhčovače jsou obdobné bipolárním deskám a využívají se k rozvodu plynu a vody po hydrofilní membráně. Voda se přemísťuje přes membránu a sytí omývající plyn. Membrány tohoto typu jsou již komerčně dostupné.

Vnitřní zvlhčovače odebírají vodu přímo z chladícího okruhu (z proudu chladícího média) a vyústí v jednoduchý integrovaný systém s dobře propojenými teplotními charakteristikami. Avšak toto uspořádání předem vylučuje využití jiného chladícího média než čisté vody. Čistá voda navíc zhoršuje problémy při startu palivového článku, neboť při nízkých teplotách může dojít k jejímu zamrznutí. Kromě toho vede zakomponování zvlhčovače do palivového článku k nárůstu rozměrů palivového článku a komplikuje jeho opravy, neboť obě části musí být opravovány současně.
Vnější zvlhčovače se nejčastěji navrhují jako membránové či kontaktní. Membránové jsou založeny na obdobném principu jako vnitřní zvlhčovače, avšak jsou umístěny odděleně. Kontaktní zvlhčovače využívají principu rozprašování zvlhčovací vody na horký povrch či do komory s velkou povrchovou plochou, kterou protéká jeden z reagujících plynů. Voda se potom odpařuje přímo do plynu a způsobuje jeho nasycení.

Vnější zvlhčovače mohou odebírat vodu z chladícího okruhu nebo mohou být vybaveny samostatným vodním okruhem. Výhody a nevýhody pro případ odběru vody z okruhu chladicího média jsou stejně jako u vnitřních zvlhčovačů. V případě zvlhčovače se samostatným vodním okruhem může být jako chladivo použito médium s vyššími nízkoteplotními charakteristikami než má voda, čímž se však stane vzájemná vazba mezi teplotou zvlhčovače a palivového článku daleko komplikovanější. Bez ohledu na zdroj vody vede využívání vnějšího zvlhčovače k nutnosti použití samostatných součástí, které jsou pravděpodobně rozměrnější a také mohutnější, zvláště v případě kontaktního zvlhčovače.

5.7.1 Charakteristiky palivového článku typu PEM

- **Účinnost**

Ve fyzice je účinnost fyzikální veličina, která udává poměr mezi výkonem a příkonem stroje při vykonávání práce.

Energie dodaná stroji musí být vždy větší než práce strojem vykonaná (v opačném případě bychom mluvili o tzv. Perpetuum mobile), kvůli ztrátám – přeměně energie na neužitečné druhy (např. v důsledku tření se mění mechanická energie v teplo).

Proto účinnost je vždy menší než 100 %.

Značka: \(\eta \)

Jednotka: jako bezrozměrná veličina buď bez jednotky, příp. s jednotkou %

Výpočet:

\[
\eta = \frac{P'}{P}
\]
kde:
P' je výkon, forma energie odebraná ze zařízení za jednotku času
P je příkon, forma energie, kterou musíme zařízení dodat proto, abychom z něj byli schopni odebrat požadovaný výkon (ve formě energie za stejný čas).

Místo výkonu a příkonu lze dosazovat celkovou práci, kterou stroj vykonal a celkovou energii, kterou stroj spotřeboval. Energetická účinnost je podíl využité energie k vložené energii. Výsledkem je většinou číslo menší než 1, a proto se často uvádí v procentech.

Účinnost palivového článku je obvykle považována za jednu ze základních východ této technologie. Ačkoliv musíme být schopni rozlišit mezi účinností samotného palivového článku a účinností celého systému.

- **Účinnost palivového článku**

Účinnosti palivového článku je podrobně rozebrána v separátní kapitole. Výsledný vztah pro výpočet účinnosti palivového článku je uveden v části “Účinnost a napětí palivového článku”.

- **Účinnost systému palivového článku**

Účinnost systému palivového článku je spojená s celkovým výkonem zdroje s palivovými články.

Palivový článek může být provozován pouze v případě, pokud je dodáván stlačený vzduch a voda a pokud jím protéká chladicí médium. Prakticky řečeno, systém palivového článku potřebuje určitá přípravná zařízení pro regulaci toků plynů a kapalin, pro promazávání jednotlivých přípravných zařízení a další doplňková provozní zařízení pro řízení elektrického a tepelného výstupu, zařízení pro kontrolu a řízení celého výrobního procesu. Některé systémy obsahují reformery pro zpracování paliva. Všechna tato zařízení představují ztráty, a tedy snižují celkovou účinnost systému ve vztahu k jeho teoretické maximální hodnotě.

Aby srovnání účinností energetického systému palivového článku s ostatními konvenčními systémy bylo vypovídající, musí být každý zdroj popsán odpovídajícím (obdobným) způsobem. Při srovnávání zdroje s palivovými články s motory s vnitřním spalováním v automobilových aplikacích je vhodné definovat oba systémy jako zařízení, do kterých vstupuje palivo a vzduch, a která dodávají mechanický výkon, který definujeme ve vztahu ke hřídeli. Dále palivo dodávané z nádrže, ať už ve plynném či kapalném skupenství, musí být po pročištění (po absolvování procesu zpracování) uskladněno. Oba systémy mají stejnou atmosférickou charakteristiku. Motor s vnitřním spalováním využívá kinetickou energii pístů, neboť se zdrojí s palivovými články musí být použit externí kompresor. Motory s vnitřním spalováním předávají mechanickou energii přímo hřídeli, zatímco zdroje s palivovými články předávají teplo a elektrický motor. Oba systémy předávají do okolí odpadní teplo. Oba systémy procházejí tepelnou obdobou s teplem. Oba systémy zejména rovnocenné přípravné zátěže vozidla.

Celková účinnost motorů s vnitřním spalováním se často cituje mezi 15 a 25 %. Tyto hodnoty reprezentují výstupní účinnost na kolech vozidla. Účinnosti na výstupu setrvačníků jsou obvykle mezi 30 a 35 %. V případě dieselových motorů jsou dokonce ještě vyšší.
V případě zdroje s palivovými články provozovaného na čistý vodík je účinnost systému pro výstup na setrvačníku stručně rozebrána v následujícím přehledu:

- účinnost palivového článku: 0 až 50 %,
- stlačení vzduchu: 95 % (85 % při uvažování energie brutto),
- účinnost střídače: 95 %,
- účinnost elektrického motoru: 97 %.

Vynásobením všech těchto hodnot dostáváme celkovou účinnost systému přibližně 31 až 39 %.

Jestliže navíc systém palivového článku využívá reformer, potom celková účinnost systému klesá v důsledku účinnosti reformeru mezi 65 a 75 % (v závislosti na typu reformeru) k hodnotám mezi 20 a 29 %.

Daleko obtížnějším případem je vyčíslet efektivnost celkové váhy systému. Systémy s palivovými články (včetně uskladnění paliva) jsou mnohem těžší než systémy motorů s vnitřním spalováním se srovnatelným výkonem a dojezdem, a proto využívají pro stejnou trasu větší množství energie.

Elektrické baterie mají elektrochemickou účinnost srovnatelnou s palivovými články. V případě použití baterie jako zdroje pro pohon automobilů je potřeba automobil vybavit měničem (střídačem) a elektrickým motorem, ačkoliv nepotřebujeme stlačený vzduch, složitý chladicí systém či reformer. Baterie jsou ve smyslu uskladnění energie těžší než palivové články, ačkoliv tento nepoměr je poněkud vyvážen eliminováním ostatních součástí systému.

Pokud půjdemme v našich úvahách ještě dále, potom nezbytnou součástí výpočtu celkové účinnosti systému je účinnost zdroje paliva. U motorů s vnitřním spalováním je tento prvek představen čištěním uhlovodíkového paliva. V případě palivových článků zahrnuje tento prvek výrobu vodíku z fosilních paliv či elektrolýzou vody, anebo zpracování paliva, jako např. metanol, pomocí palubního reformeru. Systém baterie musíme vybavit zdrojem elektrické energie pro dobíjení.

Analýza všech těchto faktorů je složitá a závisí na zdroji paliva, na obtížnosti metody jeho zpracování, uskladnění a dopravy, a na spoustě dalších faktorů, jako např. energie potřebné pro stlačení či zkapalnění paliva v závislosti na požadavku jeho formy pro zpracování. Tyto faktory výrazně ovlivňují celkovou cenu paliva. Při výpočtu celkové ceny (hodnoty) paliva bychom měli uvažovat též příspěvek k dlouhodobému znečištění prostředí.

- **Polarizační charakteristiky (U-I charakteristiky)**

V ideálním případě by na elektrickém výstupu palivového článku bylo při jakémkoliv provozním proudu ideální teoreticky stanovené napětí, tedy 1,18 V. Ve skutečnosti dosahuji palivové články svého nejvyššího výstupního napětí při stavu naprázdno (bez zatížení). S rostoucím proudem procházejícím článkem napětí článku klesá. Tento jev je znám jako polarizace článku a je představován polarizační křivkou, již vidíme na obrázku 2-18.

Polarizační křivka znázorňuje závislost napětí článku na jeho proudu. Velikost proudu je závislá na velikosti elektrické zátěže, která je připojená k palivovému článku. Polarizační křivka ve své podstatě ukazuje elektrochemickou účinnost palivového článku při jeho zatížení příslušným provozním proudem, pokud budeme uvažovat, že
účinnost je rovna podílu skutečného napětí článku k teoreticky stanovenému maximu napětí článku, tedy 1,18 V.

Pozn.: Konstruktéři palivových článků často využívají spíše velikost proudové hustoty než velikost proudu, neboť ta charakterizuje výkon článku. Proudová hustota je počítána jako velikost proudu článku vydělená velikostí aktivní plochy palivového článku v jednotkách mA · cm⁻². Proudová hustota vyjadřuje, jak účinně je materiál MEA využit. Vysoká hodnota proudové hustoty nám vyjadřuje větší využití MEA než nízká hodnota.

![Typická polarizační křivka palivového článku typu PEM](image)

Obr. 114 – Typická polarizační křivka palivového článku typu PEM

Polarizace je způsobena chemickými a fyzikálními činiteli vznikajícími v důsledku různých vlastností technologie palivového článku. Tito činitelé limitují proces reakce při průchodu proudu článkem. Tito činitelé a jejich vliv na tvar polarizační křivky jsou podrobně rozebrány v kapitole “Pracovní napětí palivového článku”. Existují tři základní (oblasti) ovlivňující celkovou polarizaci:

- aktivační polarizace,
- ohmická polarizace (či rezistenční polarizace),
- koncentrační polarizace.

Odchylka napětí článku od ideálního napětí je přímým důsledkem přímého působení všech těchto činitelů společně.

- **Výkonová charakteristik**a

Elektrický výkon je výsledkem existence napětí a proudu v jednom obvodu \((P = U \cdot I)\). Protože polarizační křivka palivového článku vykazuje vztah mezi napětím a proudem článku za všech provozních stavů, můžeme ji použít pro sestrojení odpovídající výkonové křivky. Okamžitá hodnota výkonu článku je v jakémkoliv bodě
křivky graficky charakterizována jako plocha obdélníku, jehož jeden roh se dotýká křivky a druhý je umístěn v počátku soustavy souřadnic. Výkonová charakteristika PEM článku je znázorněna na obrázku 2-19.

Maximální výkon je u skutečného palivového článku dosahován při velikosti napětí mezi 0,5 a 0,6 V, což odpovídá relativně vysokému proudu 700 až 800 mA · cm⁻². Nejvyšší hodnotu křivka dosáhne v okamžiku, kdy vnitřní rezistance článku je rovna elektrické rezistanci vnějšího obvodu. Protože účinnost článku klesá s narůstajícím napětím, musí dojít ke kompromisu mezi vysokým výkonem a vysokou účinností. Konstruktéři systému palivových článků musí vybrat požadovanou provozní oblast v závislosti na tom, jestli je pro danou aplikaci důležitější výkon článku či jeho účinnost. Není vhodné provozovat článek mimo optimální oblast, neboť mimo optimální oblast dochází k výraznému poklesu výkonu článku.

Pozn.: Konstruktéři palivových článků určují celkovou účinnost palivového článku v souvislosti s objemovou výkonovou hustotou. Ta se vypočte jako maximální výkon článku vydělený jeho fyzickým objemem a udává se v jednotkách W/l. Vysoká výkonová hustota vyjadřuje, že i z malé jednotky (palivového článku) je možné získat velký výstupní výkon. Výkonová hustota moderních palivových článků typu PEM dosahuje 1 350 W/l. Před deseti lety byla její hodnota přibližně 90 W/l.

- Účinek tlaku a teploty na výkon palivového článku

Tvar polarizační křivky závisí na provozní teplotě a tlaku článku. Obecně vzato, skupina polarizačních křivek udává obalovou křivku výkonu článku v celé provozní oblasti.
Obr. 116 – Variace polarizační křivky změnou jistých parametrů

Jakákoliv změna parametru, která způsobí vzrůst polarizační křivky, a tím i navýšení výkonu či elektrochemické účinnosti článku, je prospěšná. Opak je také možný.

Pozn.: Polarizační křivka palivového článku má tendenci klesat v souvislosti s rostoucí dobou provozu článku.

Tlak

Pozn.: Využívání čistého paliva (např. vodík) či okysličovadla (kyslík) způsobuje nárůst polarizační křivky článku. Zde se výrazně projeví vliv tlaku plynu, kdy v důsledku nepřítomnosti dalšího plynu je veškerý dostupný tlak určen k “zatlačení” vodíku a kyslíku na kontakt s elektrolytem. Nevznikají tedy žádné přídavné ztráty v důsledku tlakování nereagujících plynů.

Teplota

Polarizační křivka palivového článku narůstá se zvyšováním provozní teploty a naopak. Důvodem je urychlení přenosu hmoty uvnitř palivového článku a také
celkový pokles rezistence článku (se vzrůstem teploty klesá elektronová vodivost v kovech a narůstá iontová vodivost) při nárůstu teploty. Dohromady tyto vlivy urychlují průběh reakce.

Avšak hromadění produktové vody v proudu oksidovadla limituje provozní teplotu článku na hodnotu 100 °C. Při této teplotě se voda dostává do varu a vznikající pára kriticky snižuje tlak kyslíku, čímž dochází k drastickému snížení výkonu článku v důsledku nedostatku kyslíku. Tím může dojít ke zničení palivového článku či k poklesu jeho životnosti.

Vyšších provozních teplot článku můžeme dosáhnout v případě provozování článku s vyššími tlaky, neboť nárůst tlaku dochází ke zvýšení bodu varu vody. Avšak tento vliv je nepatrný při provozních tlacích skutečných palivových článků typu PEM. Hlavní vliv spočívá v nárůstuhlou teplovy článku až do okamžiku, kdy teplota článku dosáhne bodu varu vody, od kterého dochází dále k poklesu (úpadku) napětí. Optimální teplota palivového článku je okolo 80 °C, kdy mezi sebou balancují oba vlivy (teplota a tlak), jak je ukázáno na obrázku 2-21.

Obvyklá provozní teplota palivových článků typu PEM je mezi 70 a 90 °C.

Stechiometrické vlivy (vliv zastoupení využívané látky na celkovém množství vstupující látky).

Polarizační křivka palivového článku roste s nárůstem poměrného zastoupení reakčních plynů v láčce a naopak. Důvodem pro tento jev je navýšení poměrného obsahu látky, čímž vzrůstá šance, že počet vodíkových a kyslíkových molekul bude dostávající pro reakci. Nedostačující poměr připraví palivový článek o reaktanty (zapříčiní nedostatek reaktantů) a může způsobit trvalé zničení článku.

Poměrný obsah (zastoupení) látky stanovíme jako podíl množství (molekul) plynu skutečně přítomného vztážený k množství plynu, kterého je zapotřebí k dokončení reakce. Tento popis se jeví lepší než definice poměrné hmotnosti, kde hustoty jsou vyjadřeny vzhledem ke vztážné látky (hmotě). Látka s poměrným obsahem 1,0 tedy poskytuje přesný počet molekul plynu, který je teoreticky nutný k dokončení reakce. Hodnoty větší jak 1,0 představují nadbytek a menší jak 1,0 zase nedostatek molekul.

Obr. 117 – Vliv teploty na napětí palivového článku
plynu požadovaných pro reakci. Poměrný obsah 2,0 poskytuje přesně dvojnásobné množství molekul plynu, než je požadováno pro reakci.
Se vzrůstem poměrného obsahu využitelného plynu se napětí palivového článku asymptoticky přiblížuje k maximálnímu napětí, jak je ukázáno na obrázku 2-22. Skutečné palivové články pracují při jmenovitěm zatížení s poměrným obsahem vodíku okolo 1,4 a vzduchu přibližně 2,0. Navýšení množství využitelného plynu navíc poskytuje další výhody. Vyšší poměrný obsah využitelného plynu je požadován při práci článku s nižším výkonem.

Pozn.: Poměrný obsah (zastoupení) využitelného plynu poskytuje základní metodu srovnání využití plynu pro různá zařízení pro přeměnu energie. Např.: parní elektrárny obvykle pracují s poměrným obsahem využitelného plynu okolo 4,0; v případě naftových elektrických generátorů je to 7,0.

Obr. 118 – Vliv poměrného obsahu využitelného plynu na napětí palivového článku

- **Vliv vlhkosti**

Pro provoz palivového článku typu PEM musí být proud plynu dostatečně zvlhčován, neboť zvlhčování membrány článku probíhá prostřednictvím molekul vody, které jsou unášeny vodíkovými iony během výměnové iontové reakce.
Nedostatečné zvlhčování vede k dehydrataci membrány, což může vyústit v její popraskání a perforaci. Výsledkem je chemický zkrat, místní promíšení plynů, lokální ohřev a možnost vzniku požáru.
Naopak, nadbytek zvlhčovací vody vede ke kondenzaci a k ucpání kanálků ve bipolárních deskách. To může vyústit v jej známý jako reverzní článek, kdy postižený článek vytváří buď nulové, nebo negativní napětí. Jstež je vyskytnuté většinou vzniká při spody se zatíženým článků s negativním napětím, postižený článek (Stack) se začne chovat jako elektrolyzér. Dochází k produkci velkého množství tepla, což může eventuálně článek zničit. Z tohoto důvodu jsou palivové články vybaveny monitorovacím systémem, který je schopen určit reverzní článek dříve, než dojde k jeho zničení.
Vlhkost se obvykle měří jako „relativní vlhkost“.

Relativní z důvodu závislosti na tlaku a teplotě plynu. Pokud plyn absorbuje takové množství vody, jak je to jen fyzicky možné při určitém tlaku a teplotě, potom říkáme, že došlo k jeho nasycení a má relativní vlhkost 100 %.

Pokud se následně tento nasycený plyn ohřeje (bez další dodávky vody), relativní vlhkost poklesne (nárůst teploty o jednu stupně Celsia způsobí pokles relativní vlhkosti přibližně o 4 %). Jestliže je plyn ochlazen, část vody zkondenzuje a plyn zůstane i při nové teplotě nasycen.

Palivové články pracují obvykle při stavu nasycení nebo v jeho blízkosti, čehož se dosahuje při provozním teplotě palivového článku (určená jako teplota chladiva palivového článku). Díky tomu můžeme využít maximální možné množství vody za současného zabránění zahlcení článku.

Využití vody jako zvlhčovacího média účinně limituje provozní a uskladňovací teplotu palivového článku na hodnoty mezi 0 a 100 °C (32 a 212 °F). Mimo tyto meze voda buď zamrzne, nebo přechází do varu.

Dále musíme uvažovat, že voda ve zvlhčovači musí zůstat nevodivá. Selhání (vodivost) by mohlo způsobit zkratu či korozní proudy uvnitř palivového článku. Voda se stává vodivá při absorbování iontů z okolí. Abychom eliminovali tyto ionty, musí voda plynule protékat skrze deionizační filtr.

Vliv všech výše zmíněných činitelů na provozní napětí palivového článku, je popsán prostřednictvím matematických vztahů v kapitole „Účinnost a napětí naprázdno palivového článku“ v kapitole “Pracovní napětí palivového článek“.

5.8. Soustavy s palivovými články

Blok palivového článku (Stack) je jednotka pro přeměnu energie v systému palivového článku. Avšak celý zdroj s palivovými články se skládá z množství jednotlivých subsystémů pro řízení a regulaci provozu palivového článku. Pomocné subsystémy jsou požadovány pro systém chlazení článku, pro dopravu a zvlhčování reaktantů, vyvedení elektrického výkonu článku, monitorování a řízení provozu, stejně jako pro uskladnění paliva (případně i okysličovadla).

Účinnostní charakteristiky palivového článku v porovnání s ostatními systémy výroby elektrické energie jsou zobrazeny na obrázku 2-1. Systémy palivových článků mají vyšší tepelné účinnosti, zvláště ty s malými rozměry či středním zatížením. Právě účinnostní charakteristika poskytuje hlavní popud pro současný vývoj palivových článků. Zdroje s palivovými články jsou schopné provozu s reformovanými fosilními palivy, jakými jsou metanol či zemní plyn.

Konfigurace, provozní charakteristiky a celková systémová účinnost zdrojů s palivovými články se určuje především výběrem vhodného paliva a okysličovadla. Nejefektivnější konfigurace zdrojů je založena na čistých reaktantech - vodíku a kyslíku. Avšak pro většinu aplikací je uskladnění čistého vodíku a kyslíku nepraktické, a proto se hledají různé alternativy. Například vzduch se obvykle u systémů s palivovými články typu PEM využívá jako okysličovadlo, pokud je to možné. Účinnost palivového článku je snížena v porovnání s provozem s čistým kyslíkem a znevýhodnění je ještě umocněno potřebou stlačování vzduchu.

Tato znevýhodnění jsou také větší než kompenzace provedená přemístěním uskladnění okysličovadla ven ze zdroje. Pro určité aplikace je uskladnění čistého
vodíku nepraktické v důsledku jeho nízké uskladňovací hustoty a nedostatečné infrastruktury. Tekutá paliva, jako je metanol, nafta a petrolej mohou být reformovány na plyny bohaté na vodík, které jsou využity pro provoz palivového článku. Zemní plyn, pokud je dostupný, může být také využit v systému palivových článků. Reforming však snižuje celkovou účinnost systému a zapříčiněuje i nárůst rozměrů zdroje.

- **Systémy vodík/vzduch**

„Suchozemské“ systémy s palivovými články (pro auta, autobusy či stacionární zdroje) používají obvykle jako okysličovadlo stlačený vzduch. Jako palivo může být použita jakýkoliv z výše zmínovaných látek, avšak čistý vodík je nej jednodušší a nejúčinnější pro tyto podmínky. Vodík jako palivo trpí relativně nízkou objemovou a hmotnostní hustotou uskladnění energie ve srovnání s tekutými palivy, jež jsou v současnosti využívány. Kromě toho, není zde vybudována dostatečná infrastruktura pro vstup vodíku na světový trh s energií. Dopravní prostředky, jako přepravní autobusy a taxi, nabízejí dobrý a časově velmi blízký obchod pro systémy s palivovými články zpracovávajícími vodík.

Obr. 118 – Zjednodušené schéma zdroje s palivovými články typu PEM pracující s vodíkem a vzduchem

Na elektrickém výstupu palivového článku je neregulované DC napětí. Mělo by se provádět testování zátěže, aby byly zajištěny dobré elektrické podmínky pro předpokládanou zátěž.

Systém vodík/kyslík

V aplikacích, kde není dostupný okolní vzduch, jako je vesmír či podmořské prostředí, může být pro provoz palivového článku jako oksyličovadlo použit čistý kyslík. V těchto případech musí být kyslík uskladněn na palubě dopravního prostředku jako stlačený plyn či jako kryogenní tekutina (ochlazen pod teplotou -182,97 °C, tj. 90,18 K), zabírající určitý objem a hmotnost celkového energetického systému. Palivové články vykazují větší výkon či jako kryogenní tekutina, velkou větší napětí článku a celkovou účinnost v případě, že zpracovávají čistý kyslík místo vzduchu. Také odstranění zařízení ke stlačování vzduchu dojde k poklesu hlučnosti a parazitických ztrát.

Obrázek 2-24 znázorňuje typický zdroj s palivovými články typu PEM pracující s vodíkem a kyslíkem. Je v podstatě stejný jako v případě systému se vzduchem. Avšak u tohoto systému jsou toky obou reaktantů cirkulovány skrz palivový článek, využívající přítom kompresory pro opětovné natlakování přebytků plynů na provozní tlak. Jestliže jsou z uskladňovacích zásobníků reaktantů dostupné vhodné dopravní tlaky, mohou být kompresory nahrazeny čerpadly, čímž dojde k eliminaci parazitních ztrát spojených s cirkulací plynu.
Systémy těchto palivových článků jsou obvykle konstruovány pro provoz v uzavřeném prostředí a mohou být v podstatě provozovány jako samostatné uzavřené systémy. V ideálním případě je jediným hmotným produktem zdroje s palivovými články produktová voda. Avšak nečistoty ve vstupním vodíku a kyslíku postupně zvyšují svou koncentraci uvnitř cirkulační smyčky, a proto je nezbytné periodické čištění těchto subsystémů. Inertní části paliva a kyslíku jsou vstřebávány a odváděny prostřednictvím produktové vody palivového článku. Potřeba přidavného čištění je určena požadavkem čistoty u zařízení na uskladnění reaktantů, životností zdroje a provozními podmínkami systému.

Obr. 119 – Zjednodušené schéma zdroje s palivovými články typu PEM pracující s vodíkem a kyslíkem

- **Systém s reformingem uhlovodíkového paliva**
 Čistý vodík je nejvhodnější palivo pro systémy s palivovými články typu PEM, snižuje rozměry, zvyšuje jednoduchost a celkovou účinnost zdroje. Avšak nízká uskladňovací hustota čistého vodíku (tektého, pevného a plynného) může způsobovat určitá omezení, zvláště u dopravních prostředků. Kromě čistého vodíku je možné také extrahování vodíku z určitého paliva obsahujícího vodík (jako např. metanol, nafta a petrolej) pomocí chemického procesu známého pod pojmem reforming. Dodáním tepla a páry (či kyslíku) za přítomnosti katalyzátorů dochází k přeměně paliva na produkt bohatý na vodík. Reforming má několik důležitých...
dopadů na návrh systému palivového článku. Prvním je produkce oxidů uhlíku, jež musí být ze zdroje vypouštěny. To představuje jednu z nejdůležitějších konstrukčních výzev pro začlenění systému reformingu do uzavřeného provozního prostředí, jakým je vesmírná či podmořská aplikace. Druhým je zapříčinení nárůstu rozměrů, složitosti a nákladů systému palivového článku. Posledním dopadem je neefektivnost reformingu, jež snižuje celkovou účinnost zdroje s palivovými články.

Obr. 120 – Zjednodušené schéma palivového článku s integrovaným reformerem

Další zdroje

[4] Horák, B.a kol.: Studie pohonu mobilního prostředku s palivovým článkem, ČEA 2220045064, Ostrava 2005

6 VODÍK
Je označován chemickou značkou H (latinsky HYDROGENIUM)
Je nejlehčí a nej Jednodušší plynný chemický prvek, z kterého je stvořena převážná část vesmírné hmoty. Jeho praktické využití je velice široké, zejména pak, jako zdroj energie, redukční činidlo v chemické syntéze či metalurgii, nebo jako náplň meteorologických a pouťových balónů a do 30. let 20. stol. jako náplň vzducholodí.

Historický vývoj

Atomová struktura
Ve většině atomů vodíku se jádra skládají z jednoho protonu - Protium (lehký vodík) – 1H
• je tvořen jedním protonem a jedním elektronem
• jde o nej Jednodušší atom ve vesmíru, který tvoří jeho převažující část
• ve spojení s kyslíkem tvoří protium "lehkou vodu", H2O

V přírodě ale také existují i další formy (neboli "izotopy") vodíku obsahující:
 a) jeden proton a jeden neutron, jež je nazýván deuteriem - (těžký vodík) - 2H (2D)
 • Atom s jádrem 2H, který je představován jedním protonem a jedním neutronem, a lišící se od běžného vodíku především atomovou hmotností, která činí 2,01363 amu, se označuje jako deuterium.
 • Někdy mu bývá přiřazována i chemická značka D.
 • Deuterium je stabilní izotop, který nepodléhá radioaktivní přeměně.
 • V přírodě se běžně vyskytuje namísto lehkého vodíku.
 • Průměrně připadá na jeden atom deuteria 7 000 atomů protia.
Ve spojení s kyslíkem tvoří deuterium tzv. „těžkou vodu“, D2O. Této sloučeniny se využívá zejména v jaderném průmyslu a jako účinného stopovače biochemických reakcí.

b) dva neutrony a jeden proton, známý jako tritium - 3H (3T)
- Jako tritium se označuje vodík 3H, který má jádro složeno z jednoho protonu a 2 neutronů.
- Někdy též označován chemickou značkou T.
- Jeho atomová hmotnost činí 3,01605 amu.
- Na rozdíl od deuteria je jádro tritia nestabilní a rozpadá se s poločasem rozpadu 12,33 roku za vyzáření pouze málo energetického beta záření.
- V přírodních podmínkách vzniká tritium především v horních vrstvách atmosféry při kolizi kosmického záření s jádrem atomu deuteria, odkud difunduje k povrchu Země.
- Uměle je tritium získáváno v těžkovodních jaderných reaktorech při výrobě plutonia z přírodního uranu.
- Tritium slouží jako jedna ze složek náplně thermonukleární bomby, doposud nejničivějšího destrukčního prostředku, jaký kdy byl člověkem vyroben.
- Mimo jiné je také jedním ze základních meziproduktů jaderné fúze, která je pokládána za energetický zdroj všech hvězd v pozorovatelné části vesmíru a současně možný energetický zdroj zažehnající případnou energetickou krizi na dlouhá staletí.

Většina hmotnosti vodíkového atomu je koncentrovaná v jeho jádře. Ve skutečnosti je proton více než 1800krát těžší než elektron, neutrony mají skoro stejnu hmotnost jako proton. Avšak, průměr elektronové oběžné dráhy, který definuje velikost atomu, je přibližně 100 000 krát větší než průměr jádra. Z toho vyplývá, že vodíkové atomy se z větší míry skládají z prázdnoty. Atomy všech prvků se sestávají velkou měrou z prázdnoty, ačkoliv všechny další jsou těžší a mají všechny elektrony.

Proton má kladný (pozitivní) elektrický náboj, elektron má záporný (negativní) elektrický náboj. Neutrony nenesou náboj, Náboje protonů a elektronů každého atomu vodíku se navzájem ruší tak, že jednotlivé atomy vodíku jsou elektricky neutrální. Chemicky je jeden elektron obíhající jádro velmi reaktivní. Z toho důvodu se atomy vodíku samovolně spojují do molekul obsahujících dva atomy vodíku.

6.1. Základní fyzikálně - chemické vlastnosti
Vodík je bezbarvý, lehký plyn, bez chuti a zápachu. Je hořlavý, hoří namodralým plamenem, ale sám hoření nepodporuje. Je 14,38krát lehčí než vzduch a vede teplo 7krát lépe než vzduch.
Vodík je za normálních podmínek teplotně stabilní, pouze s fluorem se sloučuje za pokojové teploty. Je značně reaktivnější při zahřátí, především s kyslíkem a halogeny se sloučuje velmi bouřlivě, i když pro spuštění této reakce je nutná inicializace (např. jiskra, která zapálí kyslíko-vodíkový plamen).
Vodík je velmi málo rozpustný ve vodě, ale některé kovy ho pohlcují (nejlépe palladium).
Vodík vytváří sloučeniny se všemi prvky periodické tabulky (s výjimkou vzácných plynů), zejména pak s uhlíkem, kyslíkem, sírou a dusíkem, které tvoří základní stavební jednotky života na Zemi.
Vodík je schopen tvořit zvláštní typ chemické vazby, nazývaný vodíková vazba nebo také vodíkový můstek, kde vázaný atom vodíku vykazuje afinitu i k dalším atomům, s nimiž není poután klasickou chemickou vazbou. Mimořádně silná je vodíková vazba s atomy kyslíku, což vysvětluje anomální fyzikální vlastnosti vody (vysoký bod varu a tání atd.).
Jednou z vlastností vodíku je také jeho schopnost „rozpouštět“ se v některých kovech, např. v palladiu nebo platínu, které poté fungují jako katalyzátory reakcí. Je to způsobeno tím, že má vodík velmi malé molekuly, které jsou schopny procházet různými materiály.

6.1.1 Skupenství
Veškerá hmota na Zemi existuje ve formě plynu, kapaliny či pevné látky. Většina sloučenin se dokáže změnit z jednoho skupenství na jiné v závislosti na teplotě a tlaku. Obvykle se plyn mění na kapalinu snižováním jeho teploty a kapalina na pevnou látku dalším snižováním teploty. Někdy zvýšení tlaku způsobí, že kapaliny ztuhnut při vyšší teplotě než je požadované při normálním tlaku.
Přechod z kapaliny k plynům se nazývá var a přechod kapaliny na pevnou látku tuhnutí. Podle toho má každá sloučenina charakteristickou teplotu varu a teplotu tuhnutí.
Opačný proces, z plynů ke kapalině a pevné látce ke kapalině, jsou kondenzace a tání. Teplota kondenzace je stejná jako teplota varu a teplota tání je stejná jako teplota tuhnutí.
Vár a tuhnutí má největší smysl srovnat s "absolutní nulou". Absolutní nula (0 °R; 0 K; -273,15 °C) je nejnižší teplota ve vesmíru, při které se všechn molekulový pohyb zastaví. Vodík má druhou nejnižší teplotu varu a bod tání ze všech prvků. Nižší má jen helium. Vodík je kapalina pod teplotou varu 20 K (-423 °C; -253,15 °C) a pevná látka pod bodem tání 14 K (-434 °F; -259,15 °C) za normálního tlaku.
Je zřejmé, že tyto teploty jsou extrémně nízké. Teploty pod 200 K (-100 °F; -73,15 °C) jsou souhrnně známé jako kryogenní teploty, a kapaliny při těchto teplotách jsou známy jako nízkoteplotní kapaliny.

6.1.2 Vůně, barva a chuť
Čistý vodík je téměř bezbarvý, téměř bez chuti a zápachu. Únik vodíku z netěsnosti je téměř neviditelný v denním světle. Příznaky jako merkaptany a „thiophanes“, které se přidávají do zemního plynu, nesmí být přidané k vodíku pro palivový článek, neboť obsahují síru, která by otrávila palivové články.
Vodík, který pochází z reformování fosilních paliv je typicky doprovázený dusíkem, oxidem uhlíčitým, oxidem uhelnatým a dalšími stopovými plyny. Obvykle jsou všechny tyto plyny bezbarvé, bez chuti a zápachu.
6.1.3 Jedovatost a zadušení
Vodík je netoxický, ale může působit jako dusivý, neboť zaujme místo kyslíku ve vzduchu.

Kyslík v koncentracích pod 19,5 % je pro lidi biologicky nečinný. Efekt nedostatku kyslíku zahrnuje rychlé dýchání, nižší duševní bdělost, špatná svalová koordinace, chybné vnímání, deprese všech pocitů, emoční nestabilita a únava.

V koncentracích pod 12 % se může bez předchozího varování objavit okamžité bezvědomí. Malé netěsnosti v sousedství prostoru s vodíkem mohou působit malé nebezpečí zadušení. Velké netěsnosti však mohou představovat vážný problém, neboť vodík se rychle rozptylí v celém objemu. Možnost zadušení v neohraničených oblastech je skoro zanedbatelná kvůli vysoké rozptylnosti vodíku.

Následkem vdechování vodíku může být vznik hořlavé směsi uvnitř těla. Vdechování vodíku může vést až ke stavu bezvědomí a zadušení.

6.1.4 Únik

Molekuly plynného vodíku jsou menší než molekuly všech ostatních plynů a mohou pocházet skrz mnoho materiálů, které jsou vzduchotěsné nebo nepropustné pro jiné plyny. Tato vlastnost činí vodík hůře skladovatelný oproti ostatním plynům.

Únik kapalného vodíku se vypaří velmi rychle, neboť bod varu je extrémně nízký. Úniky vodíku jsou nebezpečné neboť vodík je ve směsi se vzduchem hořlavý. Nicméně malá molekulová velikost, která zvyšuje pravděpodobnost netěsnosti, má také za následek velmi vysokou rozptylnost, takže vodík se velmi rychle zředí, zvláště ve venkovním prostředí. Výsledkem toho je velmi omezená oblast hořlavosti.

Vodík je výrazně lehčí než vzduch a má tendenci stoupat. Proto i při rozlití kapalného vodíku pomine nebezpečí již krátce po vypaření.

Obr. 122 – Srovnání úniku plynů

Oproti tomu, uniklý benzín či nafta se vypařuje pomalu, čímž se prodlužuje délka trvání nebezpečí požáru. Propan je plyn hustší než vzduch, takže se hromadí v nízkých bodech a rozptyluje se pomalu. Má za následek dlouhé hoření nebo
nebezpečí výbuchu. Těžké páry mohou také vytvořit mraky, které mohou v případě, že jsou tlačené větrem, cestovat.

Metan je plyn lehčí než vzduch, avšak ne tolik vzletný jako vodík. Při jeho úniku dochází k rychlému rozptylení, avšak ne tak rychlému jako v případě vodíku. Při malých netěsnostech se rozptyl vodíku ve vzduchu ještě podpoří přítomností proudu vzduchu (z nepatrného okolního větru, z pohybu vozidla nebo z větráku chladiče), čímž klesá nebezpečí požáru. Pokud se používá vodík jako palivo vozidla, sklon vodíku prosakovat vyžaduje zvláštní péči v návrhu palivové soustavy. Ten musí zajistit, aby v případě malého úniku došlo k rozptylení vodíku s minimem překážek. Únik vodíku znamená potenciální nebezpečí požáru.

6.1.5 Hořlavost

Tři věci jsou potřeba, aby vznikl oheň nebo exploze. Palivo, kyslík (smíšený s palivem ve vhodném množství) a zdroj vznícení. Vodík jako hořlavé palivo se smíchá s kyslíkem kdykoliv má vzduch přístup do nádoby s vodíkem nebo vodík uniká z nádoby do vzduchu. K vznícení může dojít následkem jiskry, plamene nebo vysoké teploty.

- **Oblast hoření a výbušnosti**

Oblast hoření plynů je definována dolní a horní mezí hoření. Dolní mez hoření (DMH) u plynů vyjadřuje nejnižší koncentraci plynu, při které plyn po zapálení samovolně hoří (bez podpory). Pod dolní mezí není ve směsi dostatek paliva k podpoře hoření, směs je příliš chudá. Horní mez hoření (HMH) u plynů vyjadřuje nejvyšší koncentraci plynu, při které plyn po zapálení samovolně hoří. Nad horní mezí není ve směsi dostatek oxidantu (je příliš paliva), směs je příliš bohatá. Mezi oběma hranicemi je oblast hoření, ve které jsou plyny a vzduch ve správném poměru, kdy po zapálení hoří.

Stechiometrická směs nastane, když kyslík a vodík je přítomen v přesném poměru, aby úplně dokončil hoření. Jestliže je k dispozici více kyslíku než vodíku, ačkoliv všechn kyslík bude použit. Jestliže je méně kyslíku než vodíku, všechno palivo bude spotřebováno, ale část kyslíku zůstane. Praktičtě vnitřní spalování a systémy palivových článků pracují s chudou směsí, a proto dochází k reakci všeho dosažitelného paliva.

Následkem horní mezí hoření je to, že uložený vodík (plyn nebo kapalina) není hořlavý v důsledku nesmírnosti kyslíku v nádrži. Palivo se stává hořlavým jen v okrajových oblastech netěsností, kde se palivo míchá se vzduchem ve správném poměru.

Dvě související veličiny jsou dolní mez výbušnosti (DMV) a horní mez výbušnosti (HMV). Tyto veličiny se často zaměňují s (DMH) a (HMH), ačkoli nejsou stejné. DMV je nejnižší koncentrace plynu, který bude podporovat explozi při smíšení se vzduchem a zapálení. Podobně, HMV je nejvyšší koncentrace, která bude podporovat explozi při smíchání se vzduchem a zapálení.

Exploze je odlišná od ohně tím, že při explozi musí být oproti spalování koncentrace taková, že dovoluje tlaku a teplotě vystoupit na úrovni dostávající násilně zničit nádoby. Z tohoto důvodu, je daleko nebezpečnější, když se vodík uvolní do přilehlého prostoru (např. budovy), než když se uvolní přímo ven.

Vodík je hořlavý ve velmi širokém rozmezí koncentrace ve vzduchu (4 - 75%) a je výbušný taktéž ve velmi širokém rozmezí koncentrace ve vzduchu (15 – 59%) při
normální okolní teplotě. Meze hořlavosti se zvětší s teplotou, jak je ukázáno na obr.7. Následkem může být případ, kdy dokonce i malá netěsnost vodíku má schopnost hořet nebo vybuchnout. Prosakující vodík se může soustředit v přilehlém prostředí, a tím zvyšovat rizika hoření a exploze. Směs vodíku a vzduchu je potenciálně hořlavá nebo výbušná.

![Obr. 123 – Změna meze hořlavosti vodíku s teplotou](image)

- **Teplota samovznícení**

<table>
<thead>
<tr>
<th>Palivo</th>
<th>Teplota samovznícení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vodík</td>
<td>585 °C</td>
</tr>
<tr>
<td>Metan</td>
<td>540 °C</td>
</tr>
<tr>
<td>Propan</td>
<td>490 °C</td>
</tr>
<tr>
<td>Benzin</td>
<td>230-480 °C</td>
</tr>
<tr>
<td>Metanol</td>
<td>385 °C</td>
</tr>
</tbody>
</table>

Tab. č.3 Teploty samovznícení srovnávaných paliv

- **6.2. Výskyt v přírodě**

Elementární vodík je na Zemi přítomen jen vzácně, nejvíce elementárního vodíku se vyskytuje v blízkosti sopek v sopečných plynech. Převážně vodík se v našem prostředí vyskytuje ve formě dvouatomových molekul H2, vím však, že v mezihvězdném prostoru je přítomen z převážné části, jako atomární vodík H. V zemské atmosféře se vyskytuje jen ve vyšších vrstvách a díky své mimořádně nízké hmotnosti potupně z atmosféry vyprchává. Elementární vodík je jednou z nejpodstatnějších složek zemního plynu a vyskytuje se i v uhelnicích ložiscích. Ze sloučenin je nejvíce zastoupena voda, která jako moře a oceány pokrývá 2/3 zemského povrchu. Bylo vypočteno, že se vodík podílí na složení zemské kůry (včetně atmosféry a hydrosféry) 0,88 hmotnostními procenty a 15,5 atomárních procent.
Dalším významným zdrojem vodíku jsou organické sloučeniny. Vodík patří společně s uhlíkem, kyslíkem a dusíkem mezi tzv. biogenní prvky, které tvoří základní stavební kameny všech živých organismů. Vzhledem k tomu se vodík vyskytuje prakticky ve všech sloučeninách tvoričích nejvýznamnější surovinu současné energetiky a organické chemie – ropu.

Vodík je základním stavebním prvkem celého vesmíru, vyskytuje se jak ve všech svítících hvězdách, tak v mezigalaktickém prostoru. Podle současných měření se podílí ze 75 % na hmotě a z 90 % na počtu atomů přítomných ve vesmíru.

6.2.1 Tvorba vodíku v přírodě a jeho průmyslová výroba

Vodík je v přírodě tvořen rozkladem organických látek některými bakteriemi. Do budoucna usilují genetičtí inženýři o zdokonalení tohoto procesu do míry průmyslově využitelné k produkci vodíku pro vodíkové motory.

Vodík se uvolňuje při koksování uhlí, tudíž ve svítiplynu a koksárenském plynu tvoří okolo 50 % obj. Dříve se toho využívalo při průmyslové výrobě vodíku tak, že se tyto plyny zkapanaly a vodík se oddestiloval.

- **Parní reforming zemního plynu**

Tato technologie je v současnosti nejlevnějším a nejrozšířenějším způsobem výroby vodíku. Teplo pro reformní reakci i následnou konverzi oxidu uhelnatého je dodáváno z přímého spalování části zemního plynu (tzv. autotermní reforming).

![Parní reforming zemního plynu](obr. 124 – Parní reforming – štěpení uhlovodíků vodní párou)

Proces má dvě fáze; v první se za přítomnosti katalyzátoru do vodní páry (500 - 1 100o C, 0,3 - 2,5 MPa) přivádí metan (dominantní část zemního plynu). Směs metanu a páry reaguje za vzniku vodíku a oxidu uhelnatého a menšího podílu oxidu uhličitého. Poté následuje navýšování množství produkovaného vodíku konverzi CO z reforméru s další přidanou párou. Reakce probíhá již za nižších teplot.

reformní reakce: \(\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2 \)
konverze CO: \(\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \)
Účinnost (konverze) produkce vodíku je závislá na poměru páry a uhlíku ve směsi; pohybuje se okolo 80 %. Značnou nevýhodou je produkce vysokého množství oxidu uhlíčitého - na 1 kg vodíku se vyprodukuje 7,05 kg CO2.

- **Elektrolýza vody**

Elektrolýza vody je proces, při kterém stejnosměrný proud při průchodu vodou (většinou s přídavkem dalších látek pro zvýšení vodivosti) rozštěpí chemickou vazbu mezi vodíkem a kyslíkem:

\[2 \text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 \]

H+ (proton) poté reaguje na katodě za vzniku plynu, který je jímán a následně skladován. Proces elektrolýzy probíhá za pokojových teplot a pro jeho chod je nutná pouze elektrická energie. Tímto způsobem jsou vyrobena asi 4 % z celkové světové produkce vodíku, který je využíván zejména tam, kde je třeba vysoce čistý vodík.

![Obr. 125 – Schéma elektrolýzy vody](image)

Účinnost procesu se pohybuje v rozmezí 80 - 92 %. Výstupem elektrolýzy je kyslík a vysoce čistý vodíkový plyn, pro většinu aplikací bez nutnosti dodatečného dočišťování. Na celkové účinnosti elektrolytické výroby vodíku se podílí především účinnost výroby elektrické energie (30 - 40 % pro konvenční zdroje). Celková účinnost elektrolýzy se tedy pohybuje přibližně v rozmezí 25 - 35 %. Výhodu je současná produkcí kyslíku, který má podobně jako vodík široké využití.

- **Vysokoteplotní elektrolýza**

Pro vysokoteplotní elektrolýzu, nazývanou též někdy parní elektrolýzu, je charakteristické, že část dodávané energie tvoří elektrická energie a část je přivedena ve formě tepla, čímž je zvýšena celková účinnost procesu oproti klasické elektrolýze vody. Reakce probíhající ve vysokoteplotním elektrolyzéru je reverzní k reakci probíhající v parní elektrické energii (30 - 40 % pro konvenční zdroje). Celková účinnost elektrolýzy se tedy pohybuje přibližně v rozmezí 25 - 35 %. Výhodu je současná produkce kyslíku, který má podobně jako vodík široké využití.
Vodík se vyrábí termickým rozkladem methanu (zemního plynu) při 1000 °C
\[\text{CH}_4 \rightarrow \text{C} + 2 \text{H}_2 \]

Méně využíváná je příprav vodíku, katalytickým štěpením methanolu vodní parou při 250 °C
\[\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 3 \text{H}_2 \]

Další zřídka kdy využívanou přípravou je katalytický rozklad amoniaku při teplotě okolo 1000 °C
\[2 \text{NH}_3 \rightarrow \text{N}_2 + 3 \text{H}_2 \]

V laboratorním prostředí se k přípravě vodíku užívá rozpouštění neušlechtilých kovů v kyselinách
Nejčastěji se využívá reakce zinku s kyselinou chlorovodíkovou:
\[\text{Zn} + 2 \text{HCl} \rightarrow \text{ZnCl}_2 + \text{H}_2 \]

Reakcí amfoterních kovů s roztoky hydroxidů
vznikají rozpustné hydroxokomplexy a vodík, nejtypičtější je reakce hliníku s roztokem hydroxidu sodného. Nebo lze využít reakce křemíku s roztokem hydroxidu vápenatého.
\[2 \text{Al} + 2 \text{NaOH} + 6 \text{H}_2\text{O} \rightarrow 2 \text{Na[Al(OH)4]} + 3 \text{H}_2 \]
\[\text{Si} + 4 \text{NaOH} \rightarrow \text{Na}_4\text{SiO}_4 + 2 \text{H}_2 \]
\[\text{Si} + \text{Ca(OH)}_2 + 2 \text{NaOH} \rightarrow \text{Na}_2\text{SiO}_3 + \text{CaO} + 2 \text{H}_2 \]

Vodík vzniká také jako odpadní produkt při výrobě hydroxidů
Například sodík reaguje s vodou za vzniku hydroxidu sodného a vodíku.
\[2 \text{Na} + 2 \text{H}_2\text{O} \rightarrow 2 \text{NaOH} + \text{H}_2 \]

Reakcí hydridu vápenatého s vodou
vodou vzniká hydroxid vápenatý a vodík, reakce je ale pro praktické použití nevyužitelná, protože hydrid vápenatý je velmi drahý
\[\text{CaH}_2 + 2 \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 + 2 \text{H}_2 \]

Vedením vodní páry přes rozžhavené železo
vzniká oxid železnato-železitý a vodík. Tento oxid se dá využít k tvorbě permanentních magnetů.
\[3 \text{Fe} + 4 \text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4 \text{H}_2 \]

V minulosti velmi využívanou přípravou vodíku byla reakce koksu s vodní párou
Takto vzniká hlavně vodní plyn.
\[\text{H}_2\text{O} + \text{C} \rightarrow \text{CO} + \text{H}_2 \ldots \text{reakce probíhá dále} \ldots \text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \]

Další z možností je reakce methanu s vodní párou
Je zde možnost k methanu a vodní páře přidat kyslík a reakce probíhá za velmi velkého zisku vodíku.
CH\textsubscript{4} + H\textsubscript{2}O → CO + 3 H\textsubscript{2}
12 CH\textsubscript{4} + 5 H\textsubscript{2}O + 5 O\textsubscript{2} → 29 H\textsubscript{2} + 9 CO + 3 CO\textsubscript{2}

- **Téměř běžnou přípravou vodíku je reakce fosforu s vodní párou**
 za vzniku kyseliny fosforečné a vodíku.
 2 P + 8 H\textsubscript{2}O → 2 H\textsubscript{3}PO\textsubscript{4} + 5 H\textsubscript{2}

- **Biotechnologická produkce vodíku**

 Jiným zajímavým způsobem, který je dnes ovšem na počátku vývoje, je výroba vodíku pomocí mikroorganismů.
 Ačkoli "suchá" biomasa je vhodným materiálem pro konverzi pomocí klasických termochemických procesů, biomasa s vysokým obsahem vody je tímto způsobem z ekonomického hlediska nevyužitelná. Proto může být v případě vlhké biomasy výhodné využít biotechnologické procesy, kdy reakce jsou katalyzovány mikroorganismy ve vodním prostředí za nízkých teplot a tlaků. V tomto případě rozlišujeme dva procesy: vodíkovou fermentaci (i) fungující bez přítomnosti světla a fotobiologickou produkci vodíku.

6.3. Skladování vodíku

Při skladování vodíku je třeba zejména klást důraz na dodržení maximální bezpečnosti.

6.3.1 Skladování plynného vodíku

<table>
<thead>
<tr>
<th>Design (typ)</th>
<th>Popis</th>
<th>% přebírání zátěže</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ 1</td>
<td>Láhev vyrobená kompletně z oceli a hliníku</td>
<td>100 / 0</td>
</tr>
<tr>
<td>Typ 2</td>
<td>Láhev s kovovým pruhem z oceli či hliníku a s obručemi z kompozitního materiálu</td>
<td>55 / 45</td>
</tr>
<tr>
<td>Typ 3</td>
<td>Láhev zcela zabalená do kompozitního materiálu s tenkými vrstvami z oceli či hliníku</td>
<td>20 / 80</td>
</tr>
<tr>
<td>Typ 4</td>
<td>Láhev zcela zabalená v kompozitním materiálu s plastickými vrstvami</td>
<td>0 / 100</td>
</tr>
</tbody>
</table>

Tab. č. 4. Klasifikace vysokotlakých lahví

Pokud je stlačený vodík používán ve větším měřítku, potom použitý tlak může dosáhnout 500 až 600 barů, ačkoliv největší externí zásobníky na světě (15 000 m3), obsahující stlačený vzduch, používají tlaky pouze 12 + 16 barů.
Ke skladování vodíku v podobě stlačeného plynu se zejména využívají podzemní porézní zásobníky, kolektory, solné sloje či skalní dutiny, jelikož nabízejí nejlacinější řešení.

Malé stacionární zásobníky jsou bez výjimky provedeny jako nadzemní zařízení pro stlačený plyn. V průmyslovém sektoru se již vyskytla standardizace typů. Výsledkem jsou válcovité zásobníky s maximálním provozním tlakem 5 MPa a 2,8 m v průměru. V tomto případě, výpočty pro energetický obsah v hmotnostní či objemové jednotce včetně samotného zásobníku vedou na hodnoty 0,24 – 0,31 kWh/kg, resp. 0,135 kWh/l [6].

Energetická náročnost je nižší než v následující alternativě. Náklady jsou u této metody dosti vysoké (komprese, vysokotlaké nádoby). V případě použití v automobilu se tato metoda vyhodnotí rychlou dobou plnění a velkým množstvím uskladněného vodíku (na úkor bezpečnosti). Na plnou nádobu vodíku, vážící okolo 40 kg s 3,9 kg vodíku, je automobil schopný ujet až 600 km.

6.3.2 Skladování tekutého vodíku

Jedná se o velice složitou metodu, neboť musíme být schopní trvale chladit vodík na teplotu nižší než -253 °C. Proces ochlazení a komprese přitom znamená až 30 % ztrát energie, kterou v sobě vodík uchovává.

Výhodou tekutého vodíku je jeho vysoký energetický obsah; třikrát vyšší než u benzínů. Vodík je tedy palivo s nejvyšším energetickým obsahem jaké člověk využívá (vyjma nukleární energie), což je důvodem jeho použití ve vesmírném programu. Potřeba převedení vodíku do kapalného stavu a zajištění tepelně izolovaných nádrží pro jeho skladování činí tuto variantu skladování vodíku velmi drahou záležitostí.

V současnosti je ve světě asi 10 středně velkých zařízení na zkapalňování vodíku s produkci 10 ÷ 60 t/d. Nová jsou zkapalňovací zařízení v USA, Japonsku a v Evropě s kapacitami v rozsahu od 2 000 do 8 000 l/h (3 ÷ 12 t/d).

Způsob uskladnění kapalného vodíku je obvykle proveden pomocí uskladňovacích zásobníků majících perlitové podtlakové izolace. V USA je mnoho obdobných zásobníků. Největší z nich patří NASA a je situován na mysu Canaveral. Tento zásobník má objem přibližně 3 800 m³ (přibližně 270 t LH2). Běžné stacionární zásobníky mají objemy od 1 500 l (přibližně 1 100 Nm³) až do 75 000 l (přibližně 60 000 Nm³) s poloměry od 1 400 mm do 13 977 mm.

V souvislosti s aktivitami týkajícími se dopravních prostředků na vodík byla v Německu vyvinuta malá přenosná uskladňovací zařízení. Zásobníky pro auta (umístěná v testovaných dopravních prostředcích BMW) a autobusy (umístěná v MAN-Bus SL202) jsou v současnosti dostupné jako kusové vybavené položky. Zásobníky pro autobusy se skládají ze tří eliptických křížících se zásobníků s každým o objemu 190 l, odpovídající energetickému obsahu 450 kWh či 150 Nm³. Dosážitelná energetická hustota je 4,5 kWh/kg či 2,13 kWh/l. Zásobníky jsou konstruovány z 200–300 vrstev izolačních fólií dovolujících odpařit okolo 1 % kapalného plynu za den. Nicméně toto množství narůstá při spojení několika zásobníků dohromady vlivem ztrát ve spojovacím potrubí.

6.3.3 Skladování prostřednictvím hydridů kovů

Nejúčinnější metoda skladování vodíku je představována chemickými sloučeninami vodíku s jinými materiály. Existuje několik typů specifických metalhydridů, které jsou stavěny především na kovových slitinách hořčíku, niklu, železa a titanu. Pro zajištění uskladnění velkého objemu vodíku se používají malá zrna základového materiálu za účelem ziskání větší dostupné plochy povrchu. Materiál je "nabíjen" vodíkem vstřikovaným pod vysokým tlakem do kontejneru naplněného malými částečkami. Dochází ke vzniku vodíkových vazeb s materiálem a k úniku tepla. Toto teplo musí být následně navráceno pro uvolnění vodíku z vazeb.

Hydridový zásobník umožňuje uskladnit až 500x větší objem vodíku, než je objem zásobníku a to při tlacích jen o něco málo větších než je atmosférický tlak. Avšak i ty nejlepší hydridy kovů obsahují jen 8 % hmot. vodíku.

<table>
<thead>
<tr>
<th>Charakterizování</th>
<th>Nizkoteplotní</th>
<th>Vysokoteplotní</th>
</tr>
</thead>
<tbody>
<tr>
<td>Množství slitiny, jež absorbuje vodík</td>
<td>1,61 %</td>
<td>1,87 %</td>
</tr>
<tr>
<td>Množství hydridu schopného absorbovat 1 l (0,364 gal) benzínu</td>
<td>155 kg 342 lb</td>
<td>134 kg 295 lb</td>
</tr>
<tr>
<td>Množství slitiny potř. k akumulaci 2,5 kg (5,5 lb) vodíku</td>
<td>217 kg 478 lb</td>
<td>188 kg 414 lb</td>
</tr>
<tr>
<td>Bez podkladů</td>
<td>Bez podkladů</td>
<td>Bez podkladů</td>
</tr>
<tr>
<td>Mg₂Ni-H₂</td>
<td>Mg₂Ni-H₄</td>
<td>Mg-H</td>
</tr>
<tr>
<td>Množství slitiny, jež absorbuje vodík</td>
<td>1,92 %</td>
<td>1,55 %</td>
</tr>
<tr>
<td>Množství slitiny, jež absorbuje vodík</td>
<td>1,55 %</td>
<td>1,61 %</td>
</tr>
</tbody>
</table>
Tab. č. 5. Nejčastěji používané hydridy kovů

6.3.4 Uhlíková adsorpce
Techniky uhlíkové adsorpce jsou založeny na slučitelnosti uhlíku a vodíkových atomů. Vodík je čerpán do kontejnerů se substrátem malých karbonových částic, kde je upoután molekulárními silami. Tato metoda je stejně účinná jako technologie hydridů kovů, ale je více zdokonalena v oblasti nízkých teplot, kde je potřeba uvažovat rozdíl mezi tekutým vodíkem a chemickou vazbou. Adsorpce na uhlíku je technologie obdobná technologii používané u hydridů kovů, vodík je chemicky vázán na plochu vysoce porézních uhlíkatých granulí.

Uhlík adsorbuje vodík při teplotách -185 až -85 °C (-300 °F až -120 °F) a tlacích 21 až 48 bar (300 až 700 PSI). Schopnost adsorpce vodíku uhlíkem se zvyšuje s nižšími teplotami. Naopak zase dodávkou tepla dochází k překročení teploty 150 °C (300 °F), čímž se vodík uvolňuje.

6.3.5 Technologie uhlíkových nanovláken
Jedním z nejvíce vzrušujících pokroků současnosti bylo ohlášení technologie uhlíkových nanovláken. Kapacita uskladnění vodíku může dosáhnout až 70 % váhy sloučeniny. Typické hydridy kovů jsou schopny uskladnit něco mezi 2 % až 4 % váhy sloučeniny v hmotnostně těžké struktuře. Jestliže však bude dokázáno, že nové uhlíkové výsledky jsou pravdivé, potom vozidla, využívající vodíkové palivové články budou schopny ujet 5 000 km bez potřeby doplnění paliva.

Tím by byla vyřešena potřeba infrastruktury distribuce vodíku, kdy zastaralé doplňování by bylo nahrazeno depy (skladiště) či prostřednictvím poštovních služeb.

6.3.6 Oxidy železa
Stejně jako uskladňování na bázi hydridů kovů poskytuje také technologie s oxidy železa kombinování uskladňovacích a čisticích vlastností.

Očekává se, že metoda uskladňování na bázi oxidů železa nabíde velké výhody jak v oblasti energetické hustoty, tak i v oblasti nákladů. Konkurenční boj je očekáván během následujících tří až pěti let.

Oxidace železa je v tomto případě proces, při kterém je vodík formován reakcí původního železa (surová ingredience pro ocelářské peci) s vodní párou. Vedlejším produktem tohoto procesu je rez. Reakce potom můžeme popsat následujícími rovnicemi:

\[\text{Fe} + \text{H}_2\text{O} \rightleftharpoons \text{FeO} + \text{H}_2 \]
\[3 \text{FeO} + \text{H}_2\text{O} \rightleftharpoons \text{Fe}_3\text{O}_4 + \text{H}_2 \]
Jakmile je železo plně korodované, musí být vyměněno za nové. Dále jsou tyto produkty reakce opět konvertovány na původní formu. Pára a tepelná energie potřebná pro popsanou reakci se může získávat pomocí spalovací jednotky nebo v případě palivových článků z jejich chladicího okruhu. Efektivní hmotnost je u této metody 4,5 %. Kromě toho pro katalyzátory (které jsou drahé) a tím i pro vlastní reakci je požadována teplota v rozmezí 80 až 200 °C.

6.3.7 Skleněné mikrosféry
Dále je zkoumáno vysokotlaké uskladnění vodíku nazývané mikrosféry. Malé skleněné sféry (kuličky) s průměrem menším než 100 mikronů jsou schopny odolat tlakům až 1 000 MPa. Tato metoda umožňuje dosáhnout vysokých hustot uskladnění vodíku. Poněvadž prostupnost vodíku sklem je teplotně závislá, může být tok vodíku kontrolován teplem dodávaným uskladňovacímu zařízení. Výzkum tohoto způsobu uskladňování vodíku je zatím na počátku.

6.4. Využití
V chemickém průmyslu je vodík výborným redukčním činidlem, sloužícím k sycení násobných vazeb organických molekul, např. při ztužování rostlinných olejů. Redukčních vlastností plynného vodíku se někdy využívá v metalurgii k získávání kovů z jejich rud (wolfram, molybden). Tento proces je ovšem nasazován pouze tehdy, kdy nelze využít běžnější redukční činidla, jako např. koks nebo dřevěné uhli. Je to jednak kvůli poměrně vysoké ceně vodíku, ale především s ohledem na riziko možného výbuchu vodíku při kontaminaci prostředí kyslíkem nebo vzduchem za vysoké teploty.

Vodík jako zdroj energie představuje pravděpodobně budoucnost energetiky i dopravy. Při spalování vodíku vzniká vedle značného energetického zisku (96 – 120 MJ/kg vodíku[1]) pouze ekologicky naprosto nezávadná voda. Automobilové motory na bázi spalování plynného vodíku jsou v současné době předmětem intenzivního výzkumu předních světových výrobčů motorů. V současnosti je však většina vodíku získává z fosilních paliv, a vodík jako mezistupeň snižuje účinnost jejich využití.

Pro výhodný poměr chemická energie/hmotnost je vodík používán jako raketové palivo (například pro raketoplán). Zdokonalení a zlevnění palivového článku postupně umožňuje jeho širší nasazení. V tomto energetickém zařízení dochází k přímé přeměně energie chemické reakce vodíku s kyslíkem na elektrickou energii. Jako paliva se přitom používá plynného vodíku, kyslík je u některých článků dodáván z atmosféry jako při normálním hoření. Účinnost tohoto procesu dosahuje v současné době hodnoty 60 %, což je podstatně více, než při spalování vodíku a následným využitím vzniklého tepla pro výrobu elektrické energie. Nevýhodou současných palivových článků je stále ještě jejich vysoká cena a fakt, že proces je doposud značně citlivý vůči katalytickým jedům a vyžaduje proto použití velmi čistých chemikálií. Proto se palivové články od šedesátých let 20. století využívají především v kosmických technologiích, kde uvedené nevýhody nejsou příliš významné.

Perspektivně jsou izotopy vodíku pokládány za hlavní energetický zdroj při využití řízené termonukleární reakce, kdy lze sloučováním lehkých atomových jader dosáhnout významného energetického zisku. Jaderná fúze však zůstává ve stádiu experimentálních prototypů a jejich zavedení do praxe lze očekávat v horizontu několika desítek let (v roce 2008 začala probíhat výstavba termonukleárního reaktoru
ITER ve francouzském Cadarache). Praktické využití jaderné fúze se doposud uskutečnilo pouze při výrobě termouklopního bomby.

Hoření vodíku s kyslíkem je silně exotermní a vyvíjí teploty přes 3 000 °C. Toho se běžně využívá při svařování nebo řezání kyslíko-vodíkovým plamenem nebo v metalurgii při zpracování těžko tavitelných kovů.

Vodík slouží jako chladivo alternátorů v elektrárnách

Mimořádně nízké hustoty plynného vodíku se využíválo v počátcích letectví k plnění vzducholodí a balónů. Náhrada výbušného vodíku inertním heliem byla prakticky využitelná pouze v Severní Americe s přírodními zdroji podzemního helia. Navíc bylo helium embargovalo pro vývoz do nacistického Německa. Když v roce 1937 vzducholodí Hindenburg shořela při přistání s několika desítkami obětí, říkali vodíkem plněných dopravních prostředků lehkých než vzduch definitivně ukončila. Přičinou exploze vzducholodí Hindenburg byla elektrická jiskra. Jak vzducholodí "pluje" ve vzduchu, tak se plášť vzducholodě tře o okolní vzduch a dochází takto ke elektrostatickému nabití balonu vzducholodě. V tomto historickém případě šlo o kombinaci počasí v místě přistání, kde bylo před bouřkou, a přetření povrchu vzducholodi nevhodným nátěrem zvyšujícím akumulaci elektrostatického náboje. Stačila pak jediná jiskra, obal se vzňal, od obalu se propálily vnitřní balony s vodíkem, a katastrofa propukla naplno.

Nízké hustoty a nízké viskozity vodíku se využívá pro snížení tření ve strojích, kde je třeba rychle proudící plynné médium. Příkladem jsou elektrické generátory (kde může tvořit náplň skříně) nebo Stirlingův motor (jako pracovní médium).

Vodíku stále více využívá při výrobě amoniaku z prvků dusíku a vodíku. Reakce probíhá za teploty okolo 500 °C, tlaku 10–100 MPa a katalyzátoru aktivovaného železa (železo je aktivované oxidem hlinitý Al2O3 nebo oxidem draselným K2O). Amoniak je dnes nejpoužívanějším rostlinným hnojivem.

Reakcí vodíku s chlorem vznikáchlorovodík, který pak zavádíme do vody a vzniká kyselina chlorovodíková, která se v průmyslu používá k mnoha reakcím a syntézám. H2 + Cl2 → 2 HCl

Experimentálně se využívá jako fyziologicky inertní dýchací plyn ve směsích pro extrémní hloubkové potápění. Jeho výhodou je velmi nízká hustota a absence HPNS (nerovný syndrom vysokého tlaku). Kvalitní vysoké reaktivitě vodíku s kyslíkem jsou při potápění používány směsí s maximálním obsahem kyslíku 4%. Z tohoto důvodu je směs bezpečně dýchatební teprve od hloubky 30 m. Experimentálně se používal v dýchací směsí Švéda Arne Zetterström v roce 1945. Od té doby bylo provedeno několik výzkumných projektů (např. HYDRA 5, HYDRA 8), dokazujících použitelnost vodíkových směsí v hloubkách 400–600 m. Dýchací směs vodíku a kyslíku se nazývá HYDROX a směs kyslíku, vodíku a helia se nazývá HYDRELIOX. Další využití je ve strojích TOKAMAK, kde se snaží napodobit reakci probíhající ve Slunci.

6.5. Sloučeniny vodíku

6.5.1 Hydridy

Jsou to obecně všechny dvouprvkové sloučeniny vodíku s prvky. V užším slova smyslu se jako hydridy označují pouze dvouprvkové sloučeniny vodíku s alkaličními kovy a kovy alkalických zemin. Hydridy se dělí na iónové, kovalentní nebo molekulové a kovové, které nemají vždy pravidelnou strukturu a pevné stechiométrické složení. Proto se někdy ještě kovové hydridy dělí na kovové, které
mají pravidelnou strukturu a stechiometrické složení, nejčastěji to jsou práškovité látky s černou barvou, a hydridy přechodného typu, které mají proměnlivé složení, které se mění v závislosti na tlaku vodíku.

- **Hydrid sodný NaH**
 Je bílá krystalická látka s vysokou teplotou tání a varu, která se dá využít jako velmi silné redukční činidlo. Připravuje se zahříváním sodíku v atmosféře vodíku. S vodou reaguje za vzniku hydroxidu sodného a vodíku. Je to iontový hydrid.

- **Hydrid vápenatý CaH2**
 Je bílá krystalická látka s vysokou teplotou tání a varu, která se dá využít jako velmi silné redukční činidlo. Připravuje se zahříváním vápníku v atmosféře vodíku. S vodou reaguje za vzniku hydroxidu vápenatého a vodíku. Je to iontový hydrid.

- **Amoniak, čpavek neboli azan NH3**
 Je bezbarvý plyn nepříjemné chuti a čpavého zápachu. Dá se lehce zkapalnit a v laboratoři se používá jako polární rozpouštědlo. Vzniká reakcí dusíku s vodíkem za vyšší teploty a vysokého tlaku. Je to kovalentní hydrid. Hydrazin je další sloučeninou vodíku s dusíkem N2H4.

- **Voda**

- **Sirovodík (sulfan H2S)**
 Je bezbarvý plyn s nakyslou chutí a vůní po zkažených vejcích. Je extrémně jedovatý – 0,015% ve vzduchu dokáže usmrtit člověka. Je lehce rozpustný ve vodě za vzniku slabě kyselého prostředí a jeho vodný roztok se používá v analytické chemii pod názvem sirovodíková voda jako zkoumadlo. V přírodě vzniká tlením bílkovinných organismů s obsahem síry. Průmyslově se vyrábí vytěsněním ze svých solí silnější kyselinou.

- **Fluorovodík (fluoran HF)**
 Je plyn bez barvy, s leptavou chutí a nepříjemným zápachem. V roztoku se chová jako středně silná kyselina a z halogenovodíků je nejšlechtější. Používá se k uměleckému leptání skla a jako velmi silné oxidační činidlo. Připravuje se reakcí vodíku s fluorem nebo vytěsněním ze svých solí silnější kyselinou.

- **Chlorovodík (chloran HCl)**
 Je plyn bez barvy, s leptavou chutí a nepříjemným zápachem. V roztoku se chová jako silná kyselina, která je silnější než fluorovodík, ale slabší než bromovodík a jodovodík. Používá se k výrobě chloridů. Vyrábí se reakcí vodíku s chlorem nebo vytěsněním ze svých solí.
- **Bromovodík (broman HBr)**

Je plyn bez barvy, s leptavou chutí a nepříjemným zápachem. V roztoku se chová jako silná kyselina, která je silnější než chlorovodík, ale slabší než jodovodík. Nemá významné praktické použití, ale lze jej použít jako slabé redukční činidlo. Vyrábí se pouze reakcí bromu s vodíkem, nelze jej vytěsnit z jeho soli.

- **Jodovodík (jodan HI)**

Je plyn bez barvy, s leptavou chutí a nepříjemným zápachem. V roztoku se chová jako velmi silná kyselina a z halogenovodíků je nejsilnější. Nemá významné praktické využití, ale lze jej použít jako silnější redukční činidlo. Vyrábí se pouze reakcí vodíku s jodem, nelze jej vytěsnit z jeho soli.

Ostatní hydridy nejsou nijak významné a běžně se nevyskytují. Další íontové hydridy jsou hydrid lithní LiH, hydrid draselný KH, hydrid rubidní RbH, hydrid cesný CsH, hydrid berylnatý (polymerní struktura) BeH2, hydrid hořčnatý (polymerní struktura) MgH2, hydrid strontnatý SrH2 a hydrid barnatý BaH2. Další kovalentní hydridy jsou boran BH3, alan (polymerní struktura) AlH3, gallan GaH3, indal (polymerní struktura) InH3, thalan TIH3, methan (systematicky karban) CH4 (organická sloučenina), silan SiH4 (organická sloučenina), german GeH4, stannan SnH4, plumban PbH4, fosfan PH3, arsan AsH3, stibán SbH3, bismutan BiH3, selan SeH2, telan TeH2, polan PoH2 a astatan AtH.

6.5.2 **Kyslíkaté kyseliny, hydroxidy a hydráty solí**

Obecný vzorec kyslíkaté kyseliny je HaAbOc, a,b,c jsou stechiometrické koeficienty kyseliny a A je kyselinotvorný prvek. Atom vodíku je složkou každé kyseliny. Ve vodě odštěpuje kyselina ion H+ a následně vytvoří s molekulou vody oxoniový kation H3O+. Kyseliny v roztoku mají pH menší než 7.

Obecný vzorec hydroxidu je M(OH)n, n je počet molekul OH a M je zásadotvorný kov. Ve vodě hydroxidy odštěpují anion OH– a v roztoku mají pH větší než 7.

6.5.3 **Organické sloučeniny**

Jako jeden ze základních kamenů všech organických molekul je vodík přítomný ve všech tkáních živých organismů. Mezi organické sloučeniny patří sloučeniny uhlíku s vodíkem a křemíkem s vodíkem. Uhlík a vodík se vyskytují ve všech uhlovodících a téměř všech jejich derivátech. Křemík a vodík je obsažen v silanech a ve většině jejich derivátech.

Holzbecher Z.: Analytická chemie, Praha: SNTL, 1974

Horák B., Koziorek J., Kopřiva M., Papoušek M., Slanina Z.: Studie pohonu mobilních pohonů s palivovým článkem, Studie ČEA, Ostrava 2005, 203 s

7 VÝROBA PLYNŮ ZE VZDUCHU

7.1. Úvod

- Plyny v lidské činnosti

V mnoha oborech lidské činnosti je zapotřebí využití plynů, které jsou obsaženy ve vzduchu. Tyto plyny jsou využívány ve všech běžných skupenstvích. Příkladem použití plynu v pevném skupenství je suchý led – pevný oxid uhličitý CO₂. Tato látka se využívá například k hašení (sněhový hasicí přístroj), k ochlazování (pro účely konzervace některých potravin při skladování, transportu nebo prodeji) nebo k šetrnému čištění povrchů technických součástí, kdy suchý led slouží jako abrazivum k otryskování povrchu míst klasickeho pevného abraziva (písek, ocelové kulíčky). U této technologie se okamžitě po splnění své abrazivní funkce suchý led odpaří a nevytváří tak další pevný a mnohdy nebezpečný odpad.

Velmi tradiční je přímé využití plynu v jeho přirozeném plynném skupenství. Plyn je dodáván ve formě stlačeného plynu v ocelových lahvích nebo v případě větší spotřeby v baterii těchto lahví. Z těchto lahví je přes výpustný ventil plyn postupně uvolňován ke spotřebě. Zvláštním případem je přeprava acetylénu, kdy je tento plyn zprávě dokládá na vodík a uhlík s tím, že tato roznásobivá reakce způsobuje nejen znehodnocení původního plynu, ale rovněž i vývin tepelné energie – nebezpečí výbuchu. Všechny tyto popisované nádoby nebo baterie nádob musí být pravidelně testovány na dostatečnou mechanickou pevnost a odolnost tlakovými zkouškami (zpravidla se jedná o hydraulicke tlakové zkoušky). V místech vysoké spotřeby plynů se zpravidla stavějí výrobní jednotky, které přímo potrubím zásobují spotřebitele plynu o potřebné kvalitě, v potřebném množství a tlaku s různou úrovní zabezpečení nepřerušované dodávky plynů. Typickými spotřebiteli velkého množství plynu je hutní
nebo chemický průmysl, rovněž energetický průmysl, výroba skla a mnoho dalších
druhů výroby nebo zpracování. Mnoho plynů se získává přímo ze vzduchu jeho
dělením. Teoreticky by bylo možno ze vzduchu získat všechny různé plyně, ze
kterých se vzduch skládá, u některých plynů by však tato výroba byla silně
neefektivní. Typicky se dělením vzduchu získává plyn dusík, kyslík a argon. Vzduch
je možno dělit molekulou filtrací s tím, že tato technologie neumožňuje získat ze
vzduchu plyn o vysoké čistotě. Kromě možnosti výroby plynů chemickými reakcemi
se v hromadné výrobě těch technických plynů, které jsou v dostatečné míře
obsaženy ve vzduchu, zejména při potřebě vysoké čistoty a vysokého množství
vyrobených plynů, používá technologie kryogenního dělení vzduchu. Tato
technologie je ekologicky velmi přiznivá, její nevyhodou je vysoká energetická
náročnost, neboť většina ušlechtilé energie, která je potřeba k tomuto procesu, se
promění na nízkopotenciální odpadní teplo. Přes tuto energetiku náročnost je však
trvalá výroba zejména kyslíku, dusíku a argonu realizována téměř výhradně
kryogenní technologií dělení vzduchu. Další nevýhodou je poměrně vysoká
pořizovací cena technicky náročného výrobního zařízení. S ohledem na to, že
ušlechtilá energie představuje největší spotřebu v tomto procesu, je však
nevyhodou poměrně nízká spotřeba energie, neboť většina ušlechtilé energie
proměňuje na teplo a zbytek energie se využívá k výrobě plynů.

Zcela běžné je kombinovaná výroba plynů ze vzduchu a kryogenního processu
vztahuje se k tomu, že podstatou procesu je vznikání plynů s vysokou čistotou
a vysokou hustotou, což je nutné například pro lékařské účely. Výroba plynů
z vody je vzhledem k hojnosti možná a jednoduchá, ale má výhodu čistoty
a vyššího stavení plynů, což je důležité v lékařských aplikacích.

Zemská atmosféra představuje obrovskou nádobu, ve které se mohou používat
vyšší teploty a tlak, což umožňuje výrobu plynů s vysokou čistotou.

Fyzikální vlastnosti plynů

Vzhledem k tomu, že v celém dalším textu bude probírána problematika, související
s látkami v plynné podobě, tedy plynů, je zapotřebí se zmínit o některých
fyzikálních vlastnostech plynů a o obvyklé a zavedené kvantifikaci plynů. Plynů se odlišují o
dalších běžných skupenstvích látek (pevné látky a kapaliny) mnoha faktory. Jedním
z těchto faktorů je skutečnost, že mnohé plynů jsou bezbarvé, bez zápachu či jiných
příznaků, které by bylo možno detekovat lidskými smysly. Jejich přirozenou vlastností
je rozpínavost, znamená to, že vždy zaplní celý prostor, který jim je vymezen (celou
uzavřenou nádobu) s tím, že všude má stejnou hustotu a stejný

Zemská atmosféra představuje obrovskou nádobu, ve které se mohou používat
vyšší teploty a tlak, což umožňuje výrobu plynů s vysokou čistotou.

- **Normální podmínky plynu (kvantifikace plynů)**

Pro účely měření množství plynů je zavedenou jednotkou normální mětr krychlový (kubický), označení Nm³. Tato jednotka představuje látkové množství plynu 1 m³ za normálních podmínek. Normální podmínky znamenají tlak plynu 101325 Pa (normální tlak označení p₀) a teplotu 0 °C = 273,15 K (normální teplota, ve vyjádření Kelvinovy stupnice označení T₀). K „normálním podmínkám“ je vztažen molární objem ideálního plynu Vₘ (normální molový objem), který činí 22,41383 Nm³/kmol.

7.2. Vzduch

- **Co je vzduch**

Základní surovinou pro výrobu některých technických plynů je vzduch. Vzduch je směs různých plynů, zejména plynů elementárních. Vzduch hlavně představuje plynný obal Země – atmosféru, která sahá až do výšky 100 km nad zemský povrch. Za elementární plyny jsou zde pokládány plyny, jejichž molekuly obsahují pouze atomy jednoho prvku nebo jen izotopy jednoho prvku. Zcela dominantními plyny ve vzduchu jsou plyn dusík a kyslík, velmi orientačně můžeme tvrdit, že vzduch je směsí kyslíku a dusíku, která je udržována v atmosféře stejnou váhou. Zemská atmosféra má zásadní význam pro život na Zemi, zajišťuje mimo jiné až na výšku 100 km nad zemský povrch. Zemská atmosféra má zásadní význam pro život na Zemi, zajišťuje mimo jiné až na výšku 100 km nad zemský povrch. Zemská atmosféra má zásadní význam pro život na Zemi, zajišťuje mimo jiné až na výšku 100 km nad zemský povrch. Zemská atmosféra má zásadní význam pro život na Zemi, zajišťuje mimo jiné až na výšku 100 km nad zemský povrch.
vydělení vodní páry ze vzduchu kondenzací na předmětech na zemském povrchu – rosa.

- Méně a více hustý vzduch

Vzduch je všude kolem nás, s rostoucí nadmořskou výškou se hustota vzduchu snižuje a ve vysokých horách je vzduch řídký, což způsobuje problémy jak živým organizmům (například člověk při vysokohorské turistice nebo horolezení), tak i některým strojům. U strojů se jedná zejména o dva aspekty – špatné chlazení a nízký výkon. Je-li nějaká část stroje při jeho provozu chlazena vzduchem, tak klesající hustota vzduchu se snižují chladící účinky vzduchu (řidší vzduch odvádí teplo hůře) a tak může dojít k přehřátí stroje i s možnou následnou destrukcí. Jedná-li se o stroj, jehož řádná funkce je navázná na proces spalování (pístový motor u auta, spalovací turbína u letadla), řídí spalovací vzduch může způsobit pokles výkonu a v některých případech i poškození motoru/turbín. Z tohoto důvodu musí být zejména turbínové pohonné jednotky u letadel konstruovány a vybaveny tak, aby v různých nadmořských výškách měly dostatečný výkon, optimálně nastaveny spalovací poměry a aby jejich chod byl naprosto spolehlivý. Běžný civilní letecký provoz se uskutečňuje ve výškách kolem 11 km, tam je vzduch značně řídký a pro řádné zajištění životních procesů člověka zcela nepřijatelný. Při pobytu člověka ve vysokých nadmořských výškách dochází k tzv. horské nemoci, která může i skončit smrtí. Opačně je pro člověka nebezpečné i dýchání ve vyšším tlaku s následným prudkým snížením tlaku vdechovaného vzduchu. Tomuto jevu je řízeno je známého společenského úřadu, který se v situaci rychlého vynoření z krve vyloučí a utvoří bublinky dusíku. Tyto bublinky ucpou krevní řečiště a takto brání řádnému proudění krve do všech částí těla s možným následkem smrti. Potápěči se proto musí vynořovat velmi pomalu, tak je zajištěno postupné uvolňování přebytečného dusíku z krevního systému a zdraví potápěče není ohroženo.

- Dusík

Kyslík

Druhým nejvíce zastoupeným plynem ve vzduchu je kyslík. Stejně jako u dusíku i plynný kyslík tvoří dvojatomové molekuly. Chemická značka prvku kyslík je O (z latinského Oxygenium) Chemický vzorec plynného kyslíku je O_2. Protonové číslo kyslíku je 8, relativní atomová hmotnost kyslíku je 15,9994, molekulová hmotnost je tedy přibližně 32. V přírodě se vyskytují tři izotopy kyslíku. Existuje i třiatomová molekula kyslíku (O_3) – tento plyn se jmenuje ozón. Teplota varu kyslíku je za normálních podmínek -182,95 °C (90,2 K) Objemová koncentrace kyslíku ve vzduchu je 21,09 %, hmotnostní koncentrace 23,16 %. Kromě vzduchu je kyslík obsažen i ve vodě, takže vody všech moří a oceánů obsahují veliké množství tohoto prvku, voda je v podstatě oxid vodný. Mnoho dalších prvků se v přírodě vyskytuje ve sloučeninách s kyslíkem – oxidy. Jedná se například o oxid křemičitý, oxid hlinitý, oxid železnatý a železitý a mnoho dalších oxidů. Kyslík je i jedním ze základních prvků, obsažených v organických hmotách. Kyslík je pro život člověka naprosto nezbytným plynem, je to prvek, který umožňuje základní životní funkce člověka a téměř všech živočichů. V těchto organismech reakcí s jinými sloučeninami kyslík umožňuje uvolňování energie. V naší přírodě se kyslík účastí neustálé přeměny oxidu uhličitého a vody na kyslík a další organicie látky za příspěv sluneční energie (fotosyntéza). Při fotosyntéze vzniká plynný kyslík, tento se pak opět podílí na vzniku oxidu uhličitého a oxidu vodný, a tak vzniká plyn ozón. Tento ozón absorbuje škodlivé ultravioletové záření, přicházející ze slunce, mnohém lépe než kyslík O_2 a tak přispívá ke zlepšení podmínek života na naší planetě. Ozónová vrstva je nezbytnou podmínkou existence života na naší planetě. Zároveň tento cyklus umožňuje přenášet energii. Energie slunečních paprsků je vlastně základním zdrojem energie. Proces fotosyntézy, kdy vznikají organické látky, které jsou potravou pro další živé organismy, umožňuje nejen to, že energie z přímého zdroje (slunce) se přenáší na další organismy, ale také to, že energie se stává dostupnější pro další organismy. Účinná fotosyntéza vzniká pak tak, že energetické reakce probíhají tak, že energie se přenáší z jednoho organismu na další, a tak se vytváří cykly fotosyntézy. Toto umožňuje také, že energie se přenáší z jednoho organismu na další, a tak se vytváří cykly fotosyntézy. Tento cyklus umožňuje přenášet energii a akumulovat energii. Energie slunečních paprsků je vlastně základním zdrojem energie. Proces fotosyntézy, kdy vznikají organické látky, které jsou potravou pro další živé organismy, umožňuje nejen přenášet energii, ale také to, že energie se přenáší z jednoho organismu na další, a tak se vytvářejí cykly fotosyntézy. Tento cyklus umožňuje přenášet energii a akumulovat energii. Energie slunečních paprsků je vlastně základním zdrojem energie. Proces fotosyntézy, kdy vznikají organické látky, které jsou potravou pro další živé organismy, umožňuje nejen přenášet energii, ale také to, že energie se přenáší z jednoho organismu na další, a tak se vytvářejí cykly fotosyntézy. Tento cyklus umožňuje přenášet energii a akumulovat energii. Energie slunečních paprsků je vlastně základním zdrojem energie. Proces fotosyntézy, kdy vznikají organické látky, které jsou potravou pro další živé organismy, umožňuje nejen přenášet energii, ale také to, že energie se přenáší z jednoho organismu na další, a tak se vytvářejí cykly fotosyntézy. Tento cyklus umožňuje přenášet energii a akumulovat energii.
Další skupinou elementárních plynů ve vzduchu jsou „vzácné“ plyny. Tyto plyny jsou plyny inertní, to znamená, že se neslučují s jinými prvky, a tedy nevytváří sloučeniny. Koncentrace těchto plynů ve vzduchu je velmi nízká (kromě argonu cca 1 %) a tak jsou tyto plyny také označovány jako „vzácné plyny“.

- **Hélium**

Jedním z těchto plynů je hélium. Chemická značka prvku hélium je He (z latinského Helium). Plyněné hélium netvoří dvouatomové molekuly, jedná se o plyn jednoatomový. Protonové číslo hélia je 2, relativní atomová hmotnost hélia je 4,0026. V přírode se hélium vyskytuje ve dvou izotopech. Teplota varu kapalného hélia je za normálních podmínek -268,93 °C (4,22 K). Hélium je čirý plyn bez zápachu, lehčí než vzduch. Objemová koncentrace hélia ve vzduchu je 0,000524 %, hmotnostní koncentrace 0,000072 %. Pro své významné vlastnosti za normálních teplot (neohořlavost a malá hustota) se používal (a snad i používá) k náplni vzducholodí. Prvek hélia je velmi výjimečný, v plyně podobě se udrží do velmi nízkých teplot, se všech prvků má tedy nejnižší plote (po) budu varu. Je zcela nezbytný pro použití při mnoha vědeckých experimentech, zejména slouží pro navození stavu supervodivosti v elektrických vodičích. V zkapalněné podobě je běžně využíván v lékařských zobrazovacích a diagnostických přístrojích, pracujících na principu magnetické rezonance (MRI).

- **Argon**

Ze skupiny inertních (vzácných) plynů je ve vzduchu nejvíce zastoupen plyn argon. Chemická značka prvku argon je Ar (z latinského Argonum). Plyný argon (stejně jako hélium) netvoří dvouatomové molekuly, jedná se o plyn jednoatomový. Protonové číslo argonu je 18, relativní atomová hmotnost argonu je 39,948. V přírode se argon vyskytuje ve třech izotopech. Teplota bodu varu je za normálních podmínek -185,85 °C (87,3 K). Argon je čirý plyn bez zápachu, těžší než vzduch. Objemová koncentrace argonu ve vzduchu je 0,93 %, hmotnostní koncentrace 1,28 %. Jelikož se jedná o inertní plyn s největším zastoupením ve vzduchu a jeho výroba frakční destilací kapalného vzduchu je ve srovnání s ostatními inertními plyny relativně snadná a rovněž relativně levná, je tento plyn běžně průmyslově využíván, například v metalurgii pro homogenizaci (promíchávání) tekuté oceli.

- **Xenon**

Xenon je dalším inertním plynem, chemická značka je Xe (latinsky rovněž Xenon) protonové číslo xenonu je 54, relativní atomová hmotnost xenonu je 131,29. Je známo osm stabilních izotopů tohoto prvku. Teplota bodu varu kapalného xenonu je za normálních podmínek -107,1 °C (165,9 K). Objemová koncentrace xenonu ve vzduchu je 0,0000087 %, hmotnostní koncentrace 0,00004 %. Z těchto údajů je patře, že se jedná o opravdu velmi vzácný plyn. Xenon je podobně jako ostatní vzácné plyn ob dobre elektricky vodivý. Této skutečnosti se využívá v osvětlovací technice, kde je plyn xenon používán jako náplň pro elektrické výbojky. Při dostatečně nízké koncentraci v baňce xenonové výbojky je možno dosáhnout téměř bílé barvy světla, vyšší koncentrace xenonu ve výbojce vede k fialové barvě vyzařovaného světla. Xenonové výbojky jsou v poslední době velmi rozšířeny zejména v automobilové technice u hlavních světlometů motorových vozidel.
Krypton

Dalším inertním plynem, obsaženým ve vzduchu, je krypton, chemická značka Kr (latinsky Kryptonum), protonové číslo kryptonu je 36, relativní atomová hmotnost kryptonu je 83,8. Je známо šest přírodních izotopů tohoto prvku. Teplota bodu varu kapalného kryptonu je za normálních podmínek -153,22 °C (119,93 K). Objemová koncentrace kryptonu ve vzduchu je 0,000114 %, hmotnostní koncentrace 0,0003 %. Stejně jako v předchozím odstavci zmínovaný xenon je krypton velmi dobře elektricky vodivý a je rovněž využíván v osvětlovací technice jako náplň výbojkových zdrojů světla. Toho se využívá zejména při naplňování již tradičních zdrojů světla – zářívek. Při dostatečně nízké koncentraci v zářivkové trubici je možno dosáhnout bílé barvy světla, vyšší koncentrace kryptonu v trubici vede k zelenavé až světle fialové barvě vyzařovaného světla. Rovněž je krypton využíván k náplni baněk klasických vláknových žárovek, kde svou přítomností v baňce žárovek chrání rozžhavené vlákno žárovky před sublimací kovu vlákna a tak umožňuje dosažení vyšší teploty vlákna při jistotě spolehlivého provozu. Rovněž u žárovek, kde je dominantním kritériem spolehlivost (zabezpečovací technika např. v železniční dopravě), se využívá kryptonové náplně baňky žárovky.

Neon

Radon

nestabilitu tohoto prvku se koncentrace plynu radonu ve vzduchu neuvádí. Radon je někdy využíván v medicíně ke krátkodobému lokálnímu ozařování vybraných tkání jako zdroj alfa-záření. Rovněž je využíván v lázeňské léčbě (Jáchymovské lázně) například ke koupelím v přírodní radonové vodě.

Obr. 127 - Objemové poměry ve vzduchu

Objemové poměry ve vzduchu

<table>
<thead>
<tr>
<th>Dusík</th>
<th>Kyslík</th>
<th>Argon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,9%</td>
<td>21,1%</td>
<td>78,9%</td>
</tr>
</tbody>
</table>

Obr. 128 - Hmotnostní poměry ve vzduchu

Hmotnostní poměry ve vzduchu

<table>
<thead>
<tr>
<th>Dusík</th>
<th>Kyslík</th>
<th>Argon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3%</td>
<td>23,2%</td>
<td>75,5%</td>
</tr>
</tbody>
</table>

Další součásti vzduchu

Dalšími součástmi vzduchu jsou sloučeniny, většinou plyny nebo vodní pára. Vzduch může obsahovat i sloučeniny, které nebudou v dalším textu uvedeny, nedostávají se totiž do vzduchu přirozenou cestou a vyskytují se ve významných koncentracích pouze na určitých místech. Jedním z nejnebezpečnějších plynů tohoto typu je oxid uhelnatý, který může být ve vzduchu v blízkosti některých průmyslových agregátů a
zejména tam, kde dochází k nedokonalému spalování paliva s obsahem uhlíku. Tento plyn zablíží již při koncentracích na úrovni jednotek ppm (ppm = 1/1000000=10^{-6}) !!!

- **Oxid uhličitý**

Jedním z důležitých plynů, který je obsažen ve vzduchu, je dvouprvková třiatomová sloučenina kyslíku a uhlíku – oxid uhličitý (anglicky carbon dioxide), chemický vzorec CO_{2}. Oxid uhličitý (dříve také kyslíčník uhličitý) je rovněž všudypřítomnou součástí vzduchu v přírodě. Je nezbytnou součástí přírodního cyklu zachycování sluneční energie, kdy ve výsledku procesu fotosyntézy (viz výše) je oxid uhličitý rozložen a kromě vzdušného kyslíku vzniká základní stavební hmota téměř všech rostlin. Chemický vzorec oxidu uhličitého je CO_{2}. Za běžných teplot a tlaku je oxid uhličitý bezbarvým plynem, tento plyn je „těžší než vzduch“, takže v místě případného výronu oxidu uhličitého (významného úniku do atmosféry) se tento může shromažďovat ve vrstvě těsně nad povrchem a v této oblasti je pak atmosféra bez dostatečného množství kyslíku pro živé organismy – může dojít k zatužení člověka (psí jeskyně).

v plném rozsahu důsledně procesní vzduch oxidu uhličitého zbavovat a pro řádnou funkci následného kryogenního procesu je nutno snižovat množství procesního vzduchu a tím je snižován výkon dělicího zařízení. U nově navrhnutých a stavěných zařízení již konstruktéři tuto okolnost zohledňují a oholcem na očekávanou dobu provozování nově stavěného zařízení jsou molekulová síta dle prognózy o vývoji koncentrace oxidu uhličitého v atmosféře náležitě předimenzována.

- **Voda**

- **Uhlovodíky**

atomy uhlíku ve své molekule jsou za normálních podmínek plyny. Tyto plynné uhlovodíky jsou ve velmi malém množství obsaženy ve vzduchu, pro běžný život jejich velmi nízký obsah ve vzduchu nemá přílišný význam, pro kryogenní technologii dělení vzduchu je však jejich přítomnost ve vzduchu zcela zásadním faktorem, představují totiž pro kryogenní technologii dělení velké nebezpečí, což bude v dalším textu dále rozvedeno.

7.3. Kryogenní technologie

- **Co jsou kryogenní technologie**

Za kryogenní technologie jsou považovány technologické procesy, které probíhají za velmi nízkých – kryogenních teplot. V dostupných pramenech se uvádí, že hraniční teplotou pro tyto technologie je teplota -180 °C, obecně však v technické praxi není tento pojem chápán příliš přesně a i teploty nad touto hranicí jsou pokládány za kryogenní. Dosažení kryogenních teplot je důležité pro mnoho technických oborů a v moderní civilizované společnosti se bez procesů a jevů, které nejsou bez dosažení kryogenních teplot možné, naprosto neobejdeme. Jedním z typických příkladů využití kryogenních teplot je moderní medicína. Diagnostický přístroj pro neinvazivní a zdraví neškodné zjišťování struktur živé tkáně – přístroj pracující na principu magnetické rezonance (MRI) nezbytně potřebuje k řádné činnosti ve své hlavní cívce navenození stavu trvalé supravodivosti. Tohoto jevu je dosahováno až při extrémně nízkých teplotách a tak přístroje pro MRI jsou chlazeny kapalným héliem. Rovněž v potravinářství je pro šokové zmražení potravin využíván ve velké míře kapalný dusík. Za kryogenní proces by snad bylo možno (i když terminologicky nesprávně – jedná se o teplotu pod -162 °C) považovat zkapalňování zemního plynu (metanu), což je v dnešní době značně využívaná technologie pro následnou přepravu zemního plynu. Tato technologie je energeticky velmi náročná, v budoucnosti však bude jistě využívána v mnohem větší míře, jedná se o perspektivní metodou zásobování zemním plynom na velké vzdálenosti bez potřeby budování plynovodů. Velmi typickým a dlouhodobě využívaným kryogenním procesem je dělení vzduchu, založené na principu hlubokého ochlazení vzduchu, zkapalnění vzduchu a následně frakční (rektifikační) destilace. Při této destilaci je možno dosáhnout rozdělení vzduchu, který je směsí plynů, na jednotlivé podíly (frakce) čistých plynů. Tento způsob kryogenního dělení vzduchu umožňuje získat jednotlivé plyny o vysoké čistotě.

- **Destilace**

Destilace je fyzikální proces, při kterém je možno rozdělit směsí dvou či více kapalin, a to v případě, že se jedná o kapaliny s rozdílným bodem varu. Rovněž je možno procesem destilace z kapalin „odstranit“ pevné látky, které byly v kapalině původně rozpuštěny nebo rozptýleny. Asi nejvíce je procesu destilace využíváno v petrochemickém průmyslu. Triviální uspořádání destilačního přístroje představuje uzavřená nádoba s výstupem par v horní části nádoby do chladiče. Destilovaná kapalina se naleje do této nádoby a ve spodní části nádoby se začíná s ohřevem. Po určité době začne kapalina v nádobě vřít a z kapaliny budou odcházet páry vařené kapaliny. První pára bude obsahovat hlavně tu látku (z těch, které byly obsaženy v původní kapalině), která má nízký bod varu. Páry této původní kapaliny se při průchodu chladičem ochladí,
zkapalnění a takto získaná kapalina začne z chladiče vytéká. Tato kapalina se zachytí do vhodné nádoby a proces destilace pokračuje s tím, že vytékající kapalina (destilát) postupně s přibývajícím časem mění své složení (poměr zastoupení jednotlivých dílů původních kapalin, obsažených v destilované kapalině) a zároveň roste teplota vytěkající kapaliny až do doby před ukončením destilace, kdy z chladiče vychází jen kapalina s vysokým bodem varu. Ve vařené nádobě se destilace pokračuje s tím, že vytékající kapalina (destilát) postupně s přibývajícím časem mění své složení (poměr zastoupení jednotlivých dílů původních kapalin, obsažených v destilované kapalině) a zároveň roste teplota vařené kapaliny až do doby před ukončením destilace, kdy z chladiče vychází jen kapalina s vysokým bodem varu.

rovnováha, musíme však zajistit odběr kapalin a plynů z příslušných pater tak (v takové míře), aby nedocházelo k přeplňování nebo naopak přílišnému vyprázdňování kolony. V krajním případě by mohl být destilační proces téměř zastaven tím, že by se kolona od spodní části zaplňovala produkty destilace. Výsledné produkty destilace prostě z kolony nelze neodebírat. Nezbytnou podmínkou správné funkce destilační kolony je absolutní vodorovnost všech pater kolony. Výše popsaný destilační proces může tedy probíhat pouze v gravitačním poli, zpravidla vzhledem k rozměrům kolony se jedná o homogenní gravitační pole.

- Zařízení pro kryogenní dělení vzduchu

V hromadné průmyslové výrobě se pro výrobu (získávání) plynů, které jsou běžně obsaženy v vzduchu, využívá technologie dělení vzduchu. Při tomto procesu jsou získávány jednotlivé plyn v dostatečné čistotě a jejich zpětným smícháním by bylo možno znovu "vyrobit" (namíchat) původní vzduch. Jedním ze způsobů dělení vzduchu je proces kryogenní, založený na zkapalnění vzduchu a jeho následné frakční destilaci. Potřebné zařízení je relativně složité, proces potřebuje značné množství energie, umožňuje však získání jednotlivých plynů o velmi vysoké čistotě a nepředstavuje žádnou ekologickou zátěž, zejména nevytváří žádné odpadní látky. Zařízení pro kryogenní dělení vzduchu se nazývá dělicí přístroj, toto označení je z hlediska českého jazyka poněkud zavádějící, jedná se zpravidla o zařízení rozměru několika rodinných domů a výškou desítky metrů. V dalším textu se proto bude používat označení dělicí zařízení nebo jen zařízení. V anglickém jazyce se používá označení „air separation unit“, ve zkratce ASU, v německém jazyce „die Luftzerlegungsanlage“ ve zkratce LZA.

- Kyslíková čistota

V mnoha místech dělicího zařízení se vyskytuje čistý kyslík, v mnoha dalších místech se vyskytuje trvale nebo může vyskytovat epizodicky plyn s vyšším obsahem kyslíku. I nepatrné stopy mastnoty v atmosféře s vyšším obsahem kyslíku se samy vzněcují s možností prudké exploze. Je známo mnoho případů havárií s následným požárem, kdy došlo až k totálnímu zničení technologického zařízení a k mnoha úrazům s velmi vážnými až smrtelnými následky. Veškeré vnitřní povrchy dělicího zařízení a zařízení následné manipulace s plyny musí být důsledně a s absolutní jistotou zbaveny zbytků možné mastnoty. Jedná se zejména o mazací tuky nebo oleje, případně o zbytky obráběcích emulzí ale i jiné zbytky mastnoty, které mohly ulpět na nějakém povrchu třeba hluboko uvnitř nějakého dílu. Všechna potrubí a další části technologického zařízení včetně regulačních armatur, měřicí techniky, těsnění a podobně musí projít naprosto spolehlivým procesem čištění, o všech těchto procesech musí být provedeny písemné záznamy a procesy čištění a rovněž následné kompletní instalace zařízení musí probíhat dle úředně certifikovaných postupů. Mnoho dílů se již od výrobce dodává v odmaštěném provedení s označením možnosti použití pro kyslík, zde je třeba dohlížet na neporušenost obalů od výrobce a při montáži postupovat tak, aby tyto kyslíkově bezpečné díly nebyly nikdy kontaminovány. Při návrhu a konstrukci některých strojů, které pracují s plyny o vyšším obsahu kyslíku ani s čistým kyslíkem musí být tato okolnost přítomnost vyšší koncentrace kyslíku zohledněna. Jedná se zejména o kompresory, ať pístové nebo turbínové. V těchto strojích se téměř vždy vyskytuje mazací olej nebo jiný mazací prostředek a tento se ani ve stopovém množství nesmí dostat do styku se
stlačovaným plynem. Toto pravidlo platí i pro mimořádné situace, například havárie olejem mazaného ložiska. Rovněž ostatní kompresory, které stlačují plyny, které se následně mohou dostat do blízkosti procesu dělení vzduchu, musí být v „bezmažém provedení“ (například kompresory instrumentálního plynu nemohou stlačovat tento plyn s možným rizikem znečištění stlačovaného plynu i nepatrným množstvím oleje).

Příklad dělicího zařízení

Pro snadné pochopení technologického procesu dělení vzduchu je v dalším textu popsán postup dělení vzduchu na konkrétním výrobním zařízení, které bylo postaveno v 80-tých letech minulého (20-tého) století československým výrobcem FEROX Děčín. Toto zařízení je poměrně jednoduché a úroveň jeho technologického vybavení je poplatná tehdejší době a zejména možnostem socialistického hospodářství. Vzhledem k jednoduchosti tohoto zařízení je však možno na základě jeho triviálního technologického uspořádání poměrně přehledně a snadno vysvětlit základní a obecně platné principy pro kryogenní dělení vzduchu. Část koncepce tohoto zařízení je silně zastaralá, již asi 30 let se u nově stavěných zařízení nevyužívá. Zařízení tohoto typu se však do dnešní doby (rok 2014) úspěšně využívají, mají však ve srovnání s moderními a mnohem složitějšími zařízeními mnoho nevýhod. Zcela zásadní nevýhodou je nižší energetická účinnost, následně malá flexibilita (zařízení neumožňují efektivně měnit množství vyráběných plynů), dlouhá doba „nájezdu“ zařízení, možnost výroby plynů jen s velmi nízkým tlakem na výstupu zařízení. Dlouhá doba nájezdu znamená mnoho dnů od okamžiku spuštění zařízení do doby dosažení plného výkonu zařízení. Tento aspekt je velmi nepříjemný v případě, že pro zajištění spolehlivé dodávky je na jednom výrobním místě několik výrobních zařízení a zpravidla jedno zařízení slouží jako záložní (záskok) pro případ velké poruchy na jednom z právě vyrábějících zařízení. Dlouhá doba na uvedení záložního zařízení do provozu pak představuje zcela zásadní problém, neboť poruchy na zařízení již nevydrží a záložní zařízení bude potřebovat mnoho dnů do doby dosažení plných výrobních parametrů. Tato situace zpravidla znamená vynucené omezení výroby u navazujících technologií (například ocelárna). U nově budovaných zařízení se většinou na jednom místě staví jen jedno výrobní zařízení. V dnešní době je spolehlivost jednotlivých technologických částí ve srovnání s minulostí mnohem vyšší a obecně se předpokládá, že nutné opravy a udržovací práce budou provedeny vždy současně s opravami navazujících technologií (například dle plánu pravidelné opravy na navazující ocelárna). Menší poruchy, které vedou k nutnosti opravy a tedy zpravidla i k nutnosti okamžitého odstavení v rozsahu jednotek a někdy i mělo desítek hodin jsou většinou řešeny možností krátkodobé nouzové náhrady dodávek plynů z tlakových zásobníků nebo z odpařovačů, které jsou zásobovány ze zásobníku kapalných plynů. Taková situace je vždy mimořádnou událostí, kdy hlavním aspektem je co možná nejmenší omezení navazující výroby i za cenu vysokých nákladů a rovněž intenzivního úsilí o co nejrychlejší odstranění poruch a opětovné uvedení výrobního zařízení k plnému provozu. Nízký tlak vyrobených plynů znamená vždy nutnost následného stlačení (komprese) vyrobených plynů, což představuje nutnost náročné investice drahých kompresorů, které nesmí snižovat kvalitu vyrobených plynů. U stlačování kyslíku musí být tento kompresor konstruován s ohledem na vlastnosti kyslíku – stlačovaný plyn nesmí přijít do kontaktu s mastnotou (výbuch – víz předchozí kapitola). Popisované dělící zařízení bude pro účely výkladu zjednodušeno, některé části, které nemají zásadní
vliv na pochopení procesu, zde nebudou zmíněny. Pro oživení výkladu mohou být v některých místech textu uvedeny konkrétní technologické parametry např. tlak, teplota, rozměry, průtočné množství a jiné. Tyto údaje mají jen orientační charakter a vlastně ilustrační význam. Jedná se o konkrétní přibližné okamžité údaje, které nebyly získány v jednom časovém okamžiku. To znamená, že vzájemné poměry mezi těmito údaji nemusí zcela kvantitativně odpovídat fyzikálním poměrům v celém technologickém procesu. Tato možná nepřesnost však na výklad, směřující k pochopení procesu dělení vzduchu, nemá zásadní vliv, je lépe nějaké ilustrační údaje uvést, jistě to přispívá k celkové představě o zařízení. Údaje o rozměrech, hmotnosti náplně a podobné nebyly zjišťovány měřením nebo z technické dokumentace, ale expertním odhadem. I zde se tedy jedná o údaje orientační, jejich přesnost je však pro pochopení principu dělení vzduchu naprosto postačující. Dělicí zařízení bylo hlavně postaveno pro zajišťování spotřeby kyslíku v hutním provozu ocelárně. Zde slouží kyslík jako základní surovina při technologii zkujušování surového železa a tím k výrobě surové oceli. Surová ocel je poté, kdy je z kyslíkového konvertoru (tak se technologické zařízení pro zkujušování – tedy rafinaci – surového železa nazývá) odlita do pánve a v této pánvi je následně rafinována až do dosažení požadovaných finálních parametrů tekuté oceli. Následně je tato již finální tekutá ocel odlита na zařízení plynulého odlévání oceli (ZPO) do formy předvalku, které následně slouží jako surovina (vsázka) pro vylepšovací kovárny. V tomto ocelárenském procesu je zapotřebí i určité množství dusíku a argonu, takže produkty dělení vzduchu jsou na místě téměř beze zbytku využity. Nominálním výkonem dělicího zařízení je 12000 Nm³/hod plynného kyslíku. Této nominální hodnotě odpovídá spotřeba stlačeného vzduchu na vstupu do dělicího bloku na úrovni nad 60000 Nm³/hod. Zařízení kromě hutního kyslíku vyrábí čistý dusík, odpadní surový dusík a surový argon. Část dusíku rovněž spotřebována zmiňovaná ocelárně (kyslík-konvertorová ocelárně, ve zkratce KKO) je zpracována do surového hliníku a zde čistý dusík je vytvořen. Původně bylo dělicí zařízení vybaveno rektifikačním sekcí i částí pro získávání čistého argonu, tato část však byla značně nespolehlivá a provozně nestabilní, proto bylo od jejího trvalého provozování upuštěno a dělicí zařízení vyrábí jen surový argon, který je následně rektifikován v jiném zařízení. Dělicí zařízení vyrábí produkty jen v plynné podobě. Je možno z něj odebírat v malém množství i kapalné produkty, běžně se toho však nevyužívá, protože zajištění dostatečné kapalné produkty kapalin by muselo mít dělicí zařízení další zdroj chladu, podporovaný dalším kompresorem (tzv. recyklární kompresor REC), což všechna moderní zařízení zpravidla mají. Efektivní výroba kapalin je takto v dělicím zařízení vyžaduje použití deskotechnického zdroje, což výklad principu dělicího zařízení značně zkomplikovalo a znepravidelné zdroje. Zejména z tohoto důvodu bylo pro vysvětlení principu zvoleno relativně archaické, ale zároveň jednoduché dělicí zařízení.

Základní uspořádání dělicího zařízení

Základní uspořádání dělicího zařízení představuje několik technologických částí, které na sebe logicky navazují. Do dělicího zařízení vstupuje vzduch, který je při

Komprese vzduchu

Turbokompresory mají většinou několik za sebou navazujících stupňů, které bývají poháněny ze společné mechanické převodovky (na principu ozubených kol). Každý stupeň turbokompresoru představuje samostatnou kompresorovou jednotku, ke stlačování vzduchu tedy dochází postupně. Mezi jednotlivými stupni kompresoru jsou zařazeny chladiče (mezichladiče) stlačeného vzduchu. Vzduch tedy prochází prvním stupněm, kde je částečně stlačen, zároveň se významně zvýší teplota tohoto vzduchu. Následně je tento částečně stlačený vzduch veden do prvního chladiče,

Zvláštní pozornosti si zaslouhuje rozběh těchto velkých elektrických strojů točivých. Při rozběhu se musí ze stavu klidu uvést celý motor včetně mechanicky spřažené převodovky a všech stupnů kompresoru do pracovních otáček. Jedná se u uvedení velkého článku hmoty do rychlého pohybu. V okamžiku připojení motoru na rozvodnou síť je schopen motor odebírat šesti až desetinásobek jmenovitého výkonu z této sítě. V mnoha případech není v rozvodné síti takto vysoký okamžitý výkon k dispozici a po připojení motoru by došlo k výraznému poklesu elektrického napětí v síti. To by následně znamenalo, že podpěťové ochrany ostatních právě napájených spotřebičů této síti by ve snaze chránit tyto spotřebiče před nepovoleným funkcí při podpěti v přívodu elektrické energie tyto ostatní spotřebiče odpalily. Taková situace je zcela nepřijatelná a proto se dle výkonových poměrů v místě připojení kompresoru rozhoduje o tom, zda napájecí obvody kompresoru budou vybaveny dalšími zařízeními pro zajištění pomalejšího plynulého rozběhu motoru tak, aby pokles napětí v rozvodné síti během rozběhu nepřekročil povoltenou mez. Používají se rozběhové tlumivky nebo rozběhové autotransformatory, které omezí dodávaný výkon v době rozběhu a tím omezí přetěžování rozvodné síti. Po ukončení rozběhu (desítky sekund) se tyto části vyřadí z funkcí a do dalšího rozběhu jsou neopatřené. Při rozběhu motoru jsou na kompresoru činěna taková opatření (vzhodnou manipulaci s uzavíracími armaturami), aby kompresor při rozběhu běžel naprázdno, a teprve po
ukončení rozběhu se kompresor zatíží na pracovní úroveň. Napájení motoru kompresoru je vždy na úrovni vysokého napětí (VN), většinou 6,3 kV, ale i 10 kV a více. Proudy motorů mohou být v řádu tisíců ampér. Z toho je jistě patrné, že každá část příslušenství pro napájení takového motoru nebude levná. Během rozběhu motoru, kdy je jeho okamžitý odebíraný elektrický výkon několikanásobkem výkonu jmenovitého, dochází k výraznému tepelnému zatížení motoru a k výraznému ohřátí – akumulaci tepelné energie uvnitř motoru. Po rozběhu během následného řádného chodu motoru se teplota motoru uvnitř postupně snižuje, až dosáhne rovnovážného pracovního stavu. Z tohoto důvodu není možno motor v krátké době po rozběhu zastavit a znovu rozběhnout, nadbytečná energie z motoru totiž ještě zůstává z podstatné části akumulována uvnitř motoru a další porce tepelné energie z následného rozběhu by motor poškodila. Proto je opakovaný rozběh možný až po uplynutí zpravidla hodina a více. U moderních instalací toto hlídá inteligentní ochrana motoru, která má v sobě obsažení tepelný model motoru a počítá čas do povolení dalšího rozběhu motoru.

U námí popísaného dělicího zařízení je hlavní kompresor třístupňový. Pohon jednotlivých stupňů kompressoru je přes mechanickou převodovku zajišťován synchronním čtyřpólovým elektrickým motorem o výkonu 6,3 MW. Každý stupeň kompresoru má jiné pracovní otáčky, první stupeň je pochopitelně nejrozměrnější a má nejmenší pracovní otáčky, další stupně jsou pak následně rozměrově menší a pracovní otáčky mají vyšší.

Obr. 129 - Základní technologické schéma čtyřstupňového kompresoru
Příprava vzduchu

Po stlačení procesního vzduchu v hlavním kompresoru je tento vzduch veden do sprchového chladiče. Jak již název této technologické části napovídá, slouží tento chladič k mokrému vyčištění a zároveň k ochlazení procesního vzduchu. Procesní vzduch proudí směrem vzduchu proti padajícím kapkám vody, čímž dochází k jeho ochlazování a zároveň k vyčištění od drobných prachových částí. Chladicí a vyprášací voda se po průchodu chladičem shromažďuje v jeho spodní části, z níž je čerpadlem dopravována na stanici „vodní hospodářství“. Tam se voda dostává do chladičích věží, kde je protiprouděm ochlazována. Z chladičích okruhu je část vody odpouštěna, takže nedochází k postupnému zvyšování koncentrace různých látek ve vodě (například i prachových). Vzhledem k tomu, že na chladičích věžích při procesu ochlazování vody dochází i k jejímu celkem významnému odpařování, musí být voda do chladičího okruhu neustále doplňována, jedná se zde o jednotky m³ za hodinu. Chladicí voda je vedena z věží zpět ke sprchovému chladiči, kde se ve vedle stojícím chlazovači ještě ochladí surovým dusíkem, který vystupuje z regenerátorů,

Obr. 131 - Blokové schéma dělicího zařízení

1 - Vstup vzduchu z atmosféry, 2 - Filtr procesního vzduchu, 3 - Komprese procesního vzduchu, 4 - Oteplená chladicí voda (z kompresoru), 5 - Studená chladicí voda, 6 - Příprava procesního vzduchu, 7 - Oteplená chladicí voda (z přípravy vzduchu), 8 - Studená chladicí voda, 9 - Chladicí věže, 10 - Procesní vzduch do kryogenního procesu, 11 - Surový dusík z kryogenního procesu, 12 - Sekce regenerátorů, 13 - Rektifikační sekce, 14 - Plynný kyslík, 15 - Plynný čistý dusík, 16 - Plynný surový argon, 17 - Možný odběr kapalin

- Rektifikační část
Rektifikační část představuje velmi důmyslné a spolehlivé zařízení, které je klíčovou částí dělicího zařízení. Tato část je umístěna ve společném obalu – kovovém plášti z ocelových plechů. Mezi sekci regenerátorů a rektifikační sekci je plechová
přepážka, takže izolační perlí se nemůže mezi těmito sekcemi přesypávat. Tuto část dělicího zařízení budeme v dalším textu označovat jako „dělicí blok“. Jak již bylo uvedeno, dělicí blok se skládá ze dvou sekcí – sekce regenerátorů a rektifikační sekce. Ukolem dělicího bloku je s co nejménšimi náklady, což vlastně znamená s co nejménši spotřebou energie, rozdělit procesní vzduch, který přichází z regenerátorů na jednotlivé plyně.

Po očištění od mechanických nečistot, odloučení vodních kapek a stabilizaci teploty vstupuje tedy procesní vzduch do dělicího bloku, ve kterém dochází k vlastnímu ochlazování a následné rektifikační destilaci vzduchu. Celý tento blok se skládá z dvou hlavních sekcí – sekce regenerátorů a sekce rektifikační. Pro zajištění možnosti destilace vzduchu je zapotřebí vzduch ochladiť na tak nízkou teplotu aby došlo ke zkapanlení vzduchu. Teprve kapalný vzduch je možno destilovat. Předpokládejme tedy, že z teploty cca. 20 °C musíme ochladit vzduch na teplotu o více než 200 stupňů nižší. Při tomto ochlazování je využíváno principu komprese a následně expanze, podobný principu, na kterém pracují ledničky v domácnosti. V rektifikační části však již ke kompresi nedochází, procesní vzduch vstupuje do rektifikační části po předchozí kompresi (stlačení) v hlavním kompresoru. K tak vysokému ochlazení velkého množství vzduchu by bylo potřeba obrovské množství energie, proto je zde využíváno postupného ochlazování s tím, že výsledné produkty (plyny rozdělené ze vzduchu) ochlazují přicházející procesní vzduch a celková energetická bilance je vlastně vyjádřena tak, že potřebujeme v zařízení vyrobit takové množství chladu, které pokryje parazitní teplo, které vzniká když k rygogenem části tepelnými prvkami (tepelné izolace vodních proudů je velmi dokonalá, nikoliv však absolutní) a rovněž pokryje teplo, které není možno přidělovat stupaču výslednému procesnímu vzduchu. Výsledné produkty (plyny rozdělené ze vzduchu) totiž nemohou zcela odevzdat svůj chlad přicházejícímu procesnímu vzduchu, k této výměně je zapotřebí určitého teplotního spadu, u námi popísaného dělicího zařízení je to přibližně 4 teplotní stupně. V dalším textu se bude na některých místech používat pojem „odevzdat svůj chlad jako opak tepla.“ Toto použití je fyzikálně nesprávné, chlad zde představuje záporné teplo, což je v klasické fyzice nesmysl. V technické praxi tedy budeme používat například slovní vazbu „odevzdat svůj chlad“ ve smyslu „odebrat něčemu teplo tak, že látka, která odevzduhá chlad, se ohřeje a látku, která přijíma chlad, se ochlazuje“. Takovéto používání fyzikálně nekorektních slovních vazeb se v praxi používá tam, kde to významně přispívá k prvotnímu pochopení technického problému. Takže předchozí úvahu můžeme přeformulovat tak, že odcházející výsledné produkty nestačí předat přicházejícímu procesnímu vzduchu všechnen svůj chlad a část tohoto chladu je pro proces zkapanlení nenávratně ztracena a o to více chladu musíme v rektifikačním sekcí vyrobit. Zdrojem chladu, tedy místem, kde je z procesu odebrána energie, jsou expanzní turbíny. Popísané dělicí zařízení je vybaveno dvěma expanzními turbínami, které jsou provozovány tak, že vždy jedna je v provozu a druhá slouží jako záložní. Z hlediska průchodu procesního vzduchu jsou zapojeny paralelně (vedle sebe). Při novém uvádění dělicího zařízení do výroby jsou v počátečních dnech provozovány obě turbíny současně, je tak k dispozici více chladu a celkové procházení dělicího zařízení netrvá příliš dlouho. Po „najetí“ dělicího zařízení na stabilizovanou výrobu pak postačuje mít v provozu jenou expanzní turbínu. Expanzní turbína by měla být zapojena v místech s nejnižší teplotou. To by ovšem znamenalo, že by v této turbíně docházelo ke zkapanlení procesního vzduchu, na toto však expanzní turbína není
konstruována. Kapky zkapalněného vzduchu by způsobovaly nevyváženost rotoru turbiny a extrémní mechanické opotřebování turbiny. Proto je celé dělicí zařízení konstruováno tak, že dělicí zařízení obsahuje dvě hlavní destilační kolony, pracující při různých hodnotách tlaku v koloně, a ke zkapalňování dochází v dolní (vysokotlaké koloně). Na výstupu expanzní turbiny je tedy teplota blízko teplotě zkapalnění, ke zkapalnění však zde ještě nedochází.

Sekce regenerátorů

U zde popisovaného výrobního zařízení k odstranění vody a oxidu uhličitého slouží sekce regenerátorů, skládající se ze tří dvojic regenerátorů. Regenerátor je ocelová válcová nádoba o průměru cca. 3 m a výšce cca. 10 m, stojící tak, že osa regenerátoru je svislá. Regenerátor je uspořádány do tří dvojic vzduchu tak, že jedním z dvojice regenerátorů proudí procesní vzduch do kryogenní části dělicího zařízení a druhým z dvojice regenerátorů odchází z dělicího zařízení surový dusík. Po určité době – cca. 15 minut – dochází k reverzaci, kdy se regenerátor ve dvojici své úlohy vymění a prvním z dvojice regenerátorů odchází z dělicího zařízení surový dusík a druhým z dvojice regenerátorů do dělicího zařízení procesní vzduch. Celý objem regenerátoru je bez zbytku vyplněn čedičovým štěrke.

Sekce regenerátorů

U zde popisovaného výrobního zařízení k odstranění vody a oxidu uhličitého slouží sekce regenerátorů, skládající se ze tří dvojic regenerátorů. Regenerátor je ocelová válcová nádoba o průměru cca. 3 m a výšce cca. 10 m, stojící tak, že osa regenerátoru je svislá. Regenerátor je uspořádány do tří dvojic vzduchu tak, že jedním z dvojice regenerátorů proudí procesní vzduch do kryogenní části dělicího zařízení a druhým z dvojice regenerátorů odchází z dělicího zařízení surový dusík. Po určité době – cca. 15 minut – dochází k reverzaci, kdy se regenerátor ve dvojici své úlohy vymění a prvním z dvojice regenerátorů odchází z dělicího zařízení surový dusík a druhým z dvojice regenerátorů do dělicího zařízení procesní vzduch. Celý objem regenerátoru je bez zbytku vyplněn čedičovým štěrke.

Sekce regenerátorů

U zde popisovaného výrobního zařízení k odstranění vody a oxidu uhličitého slouží sekce regenerátorů, skládající se ze tří dvojic regenerátorů. Regenerátor je ocelová válcová nádoba o průměru cca. 3 m a výšce cca. 10 m, stojící tak, že osa regenerátoru je svislá. Regenerátor je uspořádány do tří dvojic vzduchu tak, že jedním z dvojice regenerátorů proudí procesní vzduch do kryogenní části dělicího zařízení a druhým z dvojice regenerátorů odchází z dělicího zařízení surový dusík. Po určité době – cca. 15 minut – dochází k reverzaci, kdy se regenerátor ve dvojici své úlohy vymění a prvním z dvojice regenerátorů odchází z dělicího zařízení surový dusík a druhým z dvojice regenerátorů do dělicího zařízení procesní vzduch. Celý objem regenerátoru je bez zbytku vyplněn čedičovým štěrke.

Sekce regenerátorů

U zde popisovaného výrobního zařízení k odstranění vody a oxidu uhličitého slouží sekce regenerátorů, skládající se ze tří dvojic regenerátorů. Regenerátor je ocelová válcová nádoba o průměru cca. 3 m a výšce cca. 10 m, stojící tak, že osa regenerátoru je svislá. Regenerátor je uspořádány do tří dvojic vzduchu tak, že jedním z dvojice regenerátorů proudí procesní vzduch do kryogenní části dělicího zařízení a druhým z dvojice regenerátorů odchází z dělicího zařízení surový dusík. Po určité době – cca. 15 minut – dochází k reverzaci, kdy se regenerátor ve dvojici své úlohy vymění a prvním z dvojice regenerátorů odchází z dělicího zařízení surový dusík a druhým z dvojice regenerátorů do dělicího zařízení procesní vzduch. Celý objem regenerátoru je bez zbytku vyplněn čedičovým štěrke.

Sekce regenerátorů

U zde popisovaného výrobního zařízení k odstranění vody a oxidu uhličitého slouží sekce regenerátorů, skládající se ze tří dvojic regenerátorů. Regenerátor je ocelová válcová nádoba o průměru cca. 3 m a výšce cca. 10 m, stojící tak, že osa regenerátoru je svislá. Regenerátor je uspořádány do tří dvojic vzduchu tak, že jedním z dvojice regenerátorů proudí procesní vzduch do kryogenní části dělicího zařízení a druhým z dvojice regenerátorů odchází z dělicího zařízení surový dusík. Po určité době – cca. 15 minut – dochází k reverzaci, kdy se regenerátor ve dvojici své úlohy vymění a prvním z dvojice regenerátorů odchází z dělicího zařízení surový dusík a druhým z dvojice regenerátorů do dělicího zařízení procesní vzduch. Celý objem regenerátoru je bez zbytku vyplněn čedičovým štěrke.
být z regenerátorů postupným ochlazováním odvedeno. Štěrková náplň regenerátorů má však i další funkci. Slouží k zachycování a tím k čištění procesního vzduchu od oxidu uhličitého a vodní páry. Při průchodu procesního vzduchu štěrkovou náplní dochází v té oblasti náplní, kde je teplota pod bodem mrazu vody, k postupnému zachycování a uplívání vody na povrchu jednotlivých čedičových kaménků ve formě ledu. Vodní pára, která takto přichází s procesním vzduchem do regenerátoru, je vlastně vymažena a ve formě ledu zůstává na povrchu kaménků a nepokračuje dále s procesním vzduchem. Obdobně v oblasti štěrkové náplni o teplotě pod zánětem dochází k zachycování oxidu uhličitého ve formě suchého ledu, který upívá na povrchu jednotlivých kaménků čedičového štěrku. Po reverzaci, kdy objemem regenerátoru proudí opačným směrem surový dusík, dochází k odpařování (sublimaci) jak suchého ledu, který se zpět rozpouští ve atmosféře surového dusíku. Obě tyto látky se odvádějí v atmosféře surového dusíku a jsou takto v příslušné oblasti náplní zachycovány v formě ledu. Při průchodu procesního vzduchu štěrkovou náplní dochází v té oblasti, kde je teplota pod bodem mrazu, k postupnému ochlazování zánětem a vytvoření ledových bloků, které se znovu obnoví v oblasti vody a povrchu kaménků ve formě ledových bloků.

Čedičová náplň

Čedičová náplň je takto schopna plnit řádně svoji funkci i po stovkách tisících reverzních cyklů, kdy se obnovuje na příslušném postupu v oblasti náplní. Čedičová náplň je takto schopna plnit řádně svoji funkci i po stovkách tisících reverzních cyklů, kdy se obnovuje na příslušném postupu v oblasti náplní. Čedičová náplň je takto schopna plnit řádně svoji funkci i po stovkách tisících reverzních cyklů, kdy se obnovuje na příslušném postupu v oblasti náplní. Čedičová náplň je takto schopna plnit řádně svoji funkci i po stovkách tisících reverzních cyklů, kdy se obnovuje na příslušném postupu v oblasti náplní.
otevření propouštěcího ventilu mezi touto dvojicí regenerátorů. Po vyrovnání tlaku se propouštěcí ventil uzavře a do dříve regenerovaného regenerátoru se připojí přívod z přípravy procesního vzduchu a do dříve foukaného regenerátoru se teplý (horní) konec regenerátoru připojí k výstupu z dělicího bloku. Celý proces reverzace je nepříjemně hlučný a zároveň dochází ke značné ztrátě již stlačeného procesního vzduchu, neboť objem stlačeného procesního vzduchu o velikosti jedné vzduchové náplně regenerátoru je v důsledku reverzace vypuštěn bez užitku do atmosféry. Reverzační ventily u dolních (studených) konců regenerátorů jsou konstruovány tak důmyslně, že podle tlaku plynu v regenerátoru samy „poznají“ který regenerátor je připojen ke stlačenému procesnímu vzduchu a naopak který regenerátor je připojen k výstupu surového dusíku z dělicího bloku a samy přepínají správný směr proudění ochlazeného procesního vzduchu z regenerátoru do sběrného potrubí nebo směr proudění surového dusíku z rozdělovacího potrubí do regenerovaného regenerátoru. Na společném sběrném potrubí z regenerátorů je procesní vzduch o velmi nízké teplotě, zbavený pevných částí (prachu), vody a oxidu uhličitého. Obsahuje však v nepatrném množství nebezpečné uhlovodíky. Celá konstrukce další části dělicího zařízení musí být proto provedena tak, aby nemohlo dojít k situaci, kdy v nějaké „kapse“ dělicího zařízení nebyl zajištěn trvalý průtok zkapalněných plynů a tak v důsledku rozdílné objemové hmotnosti zkapalněných plynů by mohlo docházet k nahromadění nebezpečných zkapalněných uhlovodíků s možností následné exploze. Koncentrace uhlovodíků je v místech dělicího zařízení po celou dobu činnosti dělicího zařízení spolehlivě monitorována a včasné výstrahy.

- **Plyny mezi sekcí regenerátorů a rektifikační sekcí**

Ze sekce regenerátorů postupuje silně ochlazený procesní vzduch do rektifikační sekce. Zároveň z rektifikační sekce vystupují produkty destilace. Těmito plyny jsou dýchací dusík a kyslík, kromě čistého dusíku a kyslíku ještě surový dusík a surový argon. Abychom výklad principu dělení vzduchu přišli nekomplikovali, problématikou argonu se zde nebudeme zabývat. Tento plyn má teplotu bodu varu mezi kyslíkem a dusíkem, v skutečném dělicím zařízení je získávána surovina pro vydělení argonu z příslušných pater horní kolony a následně kryogenně zpracovávána v sekci surového argonu. Vzhledem k blízké teplotě bodu varu kyslíku a argonu není možno ani surový argon získat přímo z horní kolony, musí se provést následná několikastupňová rektifikace kyslíko-argonové směsi, jejíž první fázi je získání surového argonu. Ze sekce rektifikace vychází i část procesního vzduchu, která prošla a expandovala na expanzní turbíně. Tato část procesního vzduchu odevzdává svůj chlad v dolní části jednotlivých regenerátorů, kde ochlazuje čedičovou náplň a takto se vlastně ohřívá. V čedičové náplni se takto neustále doplňuje chlad (čedičová náplň je takto ochlazována), čímž se vyrovnávají tepelné ztráty, způsobené nedokonalostí tepelné izolace dělicího bloku a následně ztrátě tepelné výměny mezi vstupujícím procesním vzduchem a vystupujícími produkti rektifikačního procesu.

- **Rektifikační sekce**

Kromě krátkých časových úseků reverzace prochází procesní vzduch z hlavního kompresoru vždy třemi regenerátory směrem do rektifikační sekce a třemi regenerátorů vystupuje z rektifikací seku surový dusík. Okamžiky reverzace

198
jednotlivých dvojic regenerátorů jsou časově posunuty tak, aby reverzace jednotlivých dvojic byly časově rovnoměrně rozloženy, což znamená, že od ukončení předchozí reverzace jedně dvojice regenerátorů po cca 5-ti minutách reverzuje následující dvojice regenerátorů. Teplota a tlak procesního plynu na vstupu do rektifi kační sekce v důsledku rozložení sekvenci reverzací jednotlivých dvojic regenerátorů přišlo nekolikasi, což má pro plynulý chod rektifi kačního procesu zásadní význam. V případě, že by dělicí zařízení bylo vybaveno jen jednou dvojicí regenerátorů, které by měly stejnou teplosměnnou a čisticí kapacitu jako námi popisovaných šest regenerátorů, byla by rektifi kační sekce po dobu reverzace bez tlaku procesního vzduchu na vstupu (procesní vzduch by nevstupoval), což by znamenalo porušení destilační rovnováhy na jednotlivých patrech destilačních kolon (protiproud stoupajících par by oslábl a kapalina z jednotlivých pater destilačních kolon by v nepřítupném množství „padala“ směrem dolů). Výstavba jedné dvojice velkých regenerátorů by byla investičně mnohem levnější než výstavba kapacitně ekvivalentních tří dvojic, dělicí zařízení by však nemohlo plynule pracovat. Pro spolehlivý a stabilní chod rektifi kačního části je zapotřebí mít parametry silně ochlazeného procesního vzduchu na vstupu do rektifi kační sekce co nejstabilnější.

Do dolní (vysokotlaké – HP) kolony vstupuje ve spodní části kolony silně ochlazený vzduch z regenerátorů. Dolní kolona je válcové nádoba o průměru 2,8 m a výšce 6,3 m. Má 23 pater a je vyrobená z hliníku. Dolní kolona je postavena tak, že její osa má vertikální orientaci. Ve spodní části dolní kolony (u dna) je bohatá kapalina. Jedná se o zkapalněný vzduch se zvýšeným obsahem kyslíku 30 – 35 %. Pro procesy, probíhající v rektifi kační sekci, je nezbytné tepelné propojení mezi horní částí dolní kolony a dnem horní kolony. Tento „tepelný most“ musí mít co nejmenší tepelný odpor. Principiálně by bylo možné postavit horní kolonu přímo na spodní kolonu, tedy dno horní kolony by bylo současně stropem dolní kolony. Plocha tohoto společného styku by však byla pro dostatečnou kapacitu teplosměnné plochy mezí dnem horní kolony a horní oblastí dolní kolony řešena použitím dalších nádob, které jsou připojeny jak k dolní části horní kolony, tak k horní části dolní kolony. Tyto nádoby se nazývají kondenzátory, v jejich nízkotlaké části, která je napojena na dno horní (nízkotlaké) kolony vaří kapalný kyslík, ve vysokotlaké části kondenzátorů dochází ke kondenzaci procesního vzduchu, který následně stéká do spodní (vysokotlaké) kolony. Dolní kolona, stejně jako ostatní díly rektifi kační sekce je obsypána izolačním perlitem. Všechny díly rektifi kační sekce jsou ve společném ocelovém pláští, který je rovněž hermeticky zastřešen.
zvyšuje na 3,3 m. Celá horní kolona je vysoká 9,9 m. Jak již bylo uvedeno, rektifikační sekce je z vnějšku hermeticky uzavřena ocelovým pláštěm a je příváděným dusíkem uděržována pod mírným přetlakem. Tlak uvnitř pláště rektifikační sekce je v několika místech neustále měřen a sledován. Dojde-li během provozování zařízení ke netěsnosti na technologické výbavě rektifikační sekce, je tento poruchový stav doprovázen zvýšením tlaku uvnitř pláště rektifikační sekce, což je okamžitě signalizováno zvýšením tlaku v plášti sekce.

Ve spodní části (u dna) horní (nízkotlaké – LP) kolony je čistý kapalný kyslík, jedná se o plyn s nejvyšší teplotou bodu varu. Jak bylo již dříve v části popisující funkci destilační kolony uvedeno, u dna destilující kolony se v rovnovážném stavu vždy nachází kapalina, která má ze směsi žádné tělesné skupenství. Tlak v horní destilační koloně je v několika místech neustále měřen a sledován. Dojde-li během provozu k netěsnosti na technologické výbavě rektifikační sekce, je tento poruchový stav doprovázen zvýšením tlaku uvnitř pláště rektifikační sekce, což je okamžitě signalizováno zvýšením tlaku v plášti sekce.

Část procesního vzduchu (zhruba 1/10) se ze spodní části dolní kolony vede na expanzní turbíně, kde dochází ke snížení tlaku tohoto vzduchu z úrovně tlaku v dolní koloně (cca 450 kPa) na tlak desítky (asi 30) kPa. Při této expantzi se silně snižuje tlak teploty buď kapaliny nebo teploty kapaliny v případě, že se používá čerstvý kyslík. Expanzní turbína je brzděna asynchronním motorem, který je připojen do rozvodné sítě a pracuje jako asynchronní generátor, to znamená, že jeho otáčky jsou nad synchronními otáčkami (záporný skluž) a tento motor proměňuje mechanickou energii rotace rotoru turbíny na energii elektrickou. Běžný elektrický výkon, který je tedy dodáván do sítě, je 50 kW. Tato elektrická energie je včetně složitým způsobem získána energie z tepla, které parazitně proniká do dělicího bloku, a za tepla, které je v bilanci nadbytečné přichází do dělicího bloku v důsledku nedokonalé tepelné výměny mezi přicházejícím procesním vzduchem a ochrázejícími vyrobenými plyny. V případě zběhu kapalných plynů z rektifikační sekce by bylo zapotřebí takto chybějící chlad v dělicím bloku doplnit zvýšením výkonu na expanzní turbíně. Výkon expanzní turbíny je možno regulovat natáčením (změnou polohy) lopatek statoru turbíny. Expanzní turbína je jediným zdrojem chladu v dělicím bloku. Expandovaný velmi studený vzduch z expanzní turbíny se veden potrubím do sekce regenerátorů, kde v každém ze šesti regenerátorů je veden teplosměnným potrubím ze studeného konce regenerátoru až do většiny regenerátorů, kde je veden potrubím do regenerátorů, kde je veden teplosměnným potrubím ze studeného konce regenerátoru.
studený konec, následně tento vzdech pokračuje do vhodného místa horní \((\text{nízkotlaké}) \) kolony. Při průchodu zmiňovaným teplosměnným potrubím v čedičové náplni spodní části regenerátoru se tento procesní vzdech oříšuje, odevzdá tedy svůj chlad do regenerátorů, které slouží jako výměník tepla. Tím přispívá k ochlazování celkového procesního vzduchu, vstupujícího do dělicího bloku a touto cestou doplňuje chlad v dělicím bloku.

Výměnu tepla mezi spodní části horní kolony a horní části dolní kolony v dostatečné kapacitě přechodu tepla ze spodní kolony do horní kolony – tedy vlastně ochlazování horní části spodní kolony zajišťují další díly rektifikační sekce – kondenzátory. Jejich funkce bude následně znovu a poněkud podrobněji popsána. Jsou to dvě paralelně zapojené válcové nádoby průměru 2,6 m a výšky 4,5 m, vyrobené z hliníku (osa ve vertikální poloze). Jedná se o tepelné výměníky, kdy v jednom prostoru kondenzátoru vaří čistý kyslík, který je samospádem přiváděn z dna horní kolony. Z kondenzátorů je čistý plynný kyslík, který vznikl tímto varem (prudkým odpařováním) veden jako hotový plynný produkt ke studeným koncům regenerátorů, odkud stoupá teplosměnným potrubím přes čedičovou náplň k teplému konci regenerátorů. Průchodem regenerátoru se tento vyrobený kyslík ohřívá a takto odevzdává svůj chlad pro ochlazení procesního vzduchu v regenerátořích. Druhý prostor kondenzátorů je podadnut potrubím propojen s horní částí dolní kolony. Procesní vzdech o tlaku stejném jako je tlak v dolní koloně kondenzuje na teplosměnné ploše mezi prostory kondenzátorů a takto vzniklé kapky kapalného vzduchu stékají do dolní kolony, kde je tento zkapalněný vzduch „předdestilován“ (hrubě destilován) s výsledným produktem „bohatá kapalina“. Tato bohatá kapalina je následně potrubím vedena do patřičné úrovni horní kolony, kde je použита k nástříku do kolony. Všechny tyto zdánlivě složité procesy slouží vlastně k tomu, aby byl vzduch zkapalněn a mohl být následně destilován. K vlastní čisté destilaci dochází v horní nízkotlaké koloně, kdy podstatná část energie, potřebná ke kompresi je zmařena jako nízkopotenciální odpadní teplo. Pro odvod tohoto tepla na chladicí věže je ještě potřeba dalších energie, protože pro cirkulaci chladicí vody musí běžet cirkulační čerpadla. Jenom nepatrnou část takto vydané energie dostaneme zpátky ve formě elektrické energie z brzdění expanzní turbíny asynchronním generátorem. Pro počáteční úplnost je zapotřebí se ještě zmínit o dalších dílech rektifikační sekce – adsorbérech. Adsorbéry jsou nádoby (komory) vždy v páru (dvojici), které slouží k zachytávání škodlivých a nebezpečných uhlovodíků a těch částeček oxidu uhličitého, kterými se podařilo „projít“ přes regenerátoru do rektifikační sekcí. Vzhledem k tomu, že bohatá kapalina je odebírána ze dna dolní komory, nemohou se v této koloně částečky těchto škodlivín zachytit a akumulovat. Bohatá kapalina tyto škodliviny smývá do adsorbéru, kde jsou na aktivní náplně tyto škodliviny zachycovány. Adsorbéry jsou zprvu vypuštěny do regenerátoru, kde jsou na aktivní náplně tyto škodliviny zachycovány. Adsorbéry jsou ve dvojici, vždy jeden adsorbér plní svou adsorbční funkci a druhý je regenerován tak, že je z něj v něm původně obsažená bohatá kapalina z předchozí periody adsorbce vypuštěna a celá náplň adsorbéru se zařídí až na normální teplotu a zároveň se vysouší. Tím je náplň adsorbéru zcela regenerována a adsorbér může opět jako nový plnit svoji funkci. Takto zregenerovaný adsorbér se zapoje do toku bohaté kapaliny a jeho dvojice je přepojeno do periody regenerace. Obdobně jsou v nejnižším místě výskytu
kapalného kyslíku v obvodech kondenzátorů zapojeny dva adsorbéry kapalného kyslíku. Tyto adsorbéry mají za úkol zachytit poslední možné zbytky uvedených škodlivin, jedná se o částce, kterým se díky nedokonalosti adsorbce v adsorbérech bohaté kapaliny podařilo dostat do horní kolony, kde se logicky postupně propadly na dno horní kolony a odtekly spolu s kapalným kyslíkem do kondenzátorů. Princip a časový postup funkce dvojice adsorbérů kapalného kyslíku je obdobná dvojici adsorbérů bohaté kapaliny s tím, že perioda regenerace a vlastně reverzace adsorbérů kapalného kyslíku je o jeden řád delší. Obsah škodlivých uhlovodíků v kritických částech rektifikační sekcí je průběžně monitorován analytickými přístroji s funkcí včasné výstrahy v případě dosažení nežádoucí a nepřípustně koncentrace těchto uhlovodíků.

Obr. 132 - Technologické uspořádání sekce přípravy vzduchu

1 - Přívod procesního vzduchu z kompresoru, 2 - Sprchový chladič, 3 - Vstup chladicí vody, 4 - Výstup vody k chladicím věžím, 5 - Odlučovač vodních kapek, 6 - Výstup procesního vzduchu do sekcí regenerátorů, 7 - Výstup zachycené vody, 8 - Ochlazovač chladicí vody, 9 - Výstup surového dusíku do atmosféry, 10 - Přívod surového dusíku ze sekcí regenerátorů, 11 - Přívod chladicí vody od chladicích věží

Nájezd dělicího zařízení

Před započetím uvádění do chodu dělicího zařízení musí být zařízení zcela zkompletováno a dokonale zaizolováno. Rovněž štěrková náplň jednotlivých regenerátorů musí plně vyplňovat objem těchto nádob. Všechny vnitřní prostory kryogenní části musí být perfektně vysušeny, v adsorbérech musí být čerstvá a naprosto čistá náplň. Podmínkou započetí je rovněž úspěšné zakončení všech tlakových a těsnostních zkoušek a kontrola, zda všechny tlakové celky dle příslušných protokolů jsou ještě schopny absolvovat další kampaň provozu dělicího zařízení, aniž by došlo k vyčerpání mechanické životnosti těchto tlakových celků s přihlédnutím k platné legislativě a jiným předpisům. Další podmínkou je dosažení
jistoty v oblasti požadavků na „kyslíkovou čistotu“ všech dotčených částí dělicího zařízení.

U regulačních armatur a uzavíracích ventilů se ověřuje jejich správná funkce. U těch armatur a ventilů, které jsou ovládány ručně, se správná funkce ověřuje ručně obsluhou zařízení, u dálkově ovládaných armatur a ventilů se tato funkce ověřuje pomocí řídícího systému. U regulačních a expantních turbín se zapisují olejová čerpadla a zpravidla i topná zařízení pro oheň mazacího oleje, pochopitelně se kontroluje dostatečnost a kvalita olejových náplní v olejových nádržích. Dalším krokom je ověření připravenosti vodní náplně v okruzích chladicí vody. Voda musí být nejen v dostatečném množství, ale i v požadované kvalitě. Další nezbytnou podmínkou spuštění dělicího zařízení je přítomnost a odpovídající kvalita napájecího napětí ve všech používaných napěťových úrovních. Neopomenutelným aspektem pro možnost započetí provozu dělicího zařízení je přítomnost kvalifikované lidské obsluhy v dostatečném počtu pracovníků, zpravidla se do této skupiny doplňuje technik zařízení a procesní inženýr. Rovněž bývá přítomen pohotovostní pracovní údržby se schopností rychlého rozboru možných příčin případné poruchy a se schopností rychlého zorganizování následné opravy.

Dalším krokom je spuštění vodních čerpadel chladicích okruhů a kontrola dosažení hodnot tlaků, teplot a průtoků množství chladicí vody v předepsaném rozsahu. Tato kontrola se týká všech sledovaných míst a u těch veličin, které jsou sledovány v řídícím systému, se zároveň ověřuje drobné časové změny měřených hodnot, což je i praktickou zkouškou toho, zda je příslušný měřený bod s celou měřicí smyčkou „živý“. Podle povětromostní situace se zapisují ventilátory na chladicích věžích.

- **Spuštění kompresoru**

Následným krokom je spuštění hlavního kompresoru. V pneumatické části kompresoru se uzavírají některé armatury tak, aby se kompresor nerozbíhal „do zátěže“, ale naprázdno, tedy aby v době spuštění nestlačoval vzduch. Již samotná setrvačná hmota všech rotujících dílů kompresoru představuje pro rozběh kompresoru obrovskou mechanickou zátěž a není možno k této zátěži přidávat ještě zátěž ze stlačování vzduchu. Teprve po dosažení pracovních otáček kompresoru je tento stroj následně postupně zatěžován proudem procesního vzduchu až do dosažení provozních parametrů procesního vzduchu. Po ověření správné polohy všech armatur a ventilů na kompresoru se následně ověřuje správnost parametrů mazacího oleje ve všech měřených místech. Správné hodnoty tlaků mazacího oleje jsou předpokladem dlouhé životnosti všech ložisek a i ostatních kluzně namáhaných dílů kompresoru. Důležitá je i správná teplota oleje, neboť viskozita jako klíčový parametr mazacích schopností oleje je na teplotě silně závislá. Jsou-li splněny všechno popísané podmínky (a mnoho dalších, které zde nejsou uvedeny), může obsluha přistoupit k vlastnímu startu motoru. Je nezbytné zajistit dostatečný odstup všech osob od kompresoru, a to jak z důvodu zajistění dostatečné vzdálenosti osob od rotujících částí stroje, tak i z důvodu ochrany těchto osob před možným zasažením nějakou drobnou mechanickou součástkou, která mohla být zapomenuta při předchozí revizi nebo opravě stroje. Každé spuštění velkého rotačního stroje představuje určité nebezpečí a je lépe sledovat rozběh takového stroje zpovzdále.
Další text obsahuje stručný popis rozběhu čtyřpólového synchronního motoru s výkonem nad 6 MW, jmenovité napájecí napětí 6,3 kV, 50 Hz. Rozběh je asynchronní, po dobu rozběhu plní svoji rozběhovou funkci měděná klec rotoru, která představuje kotvu nakrátko a zároveň po dobu běhu motoru působí jako tlumič případných nerovnoměrností rotačního pohybu rotoru. V okamžiku připojení svorek statorového vinutí k napájecímu obvodu VN musí být v obvodu buzení rotorového vinutí zapojen rozběhový odporník. Tím je zaručeno, že budicí vinutí motoru pomáhá rozběhové klece k plynulému rozběhu dle návrhu výrobce motoru a zároveň chrání budicí vinutí před nepřípustným napěťovým namáháním, které by jinak v tomto vinutí nastalo. Statorový proud je po dobu rozběhu omezován reaktory (vzduchovými VN tlumivkami). Tyto tlumivky jsou zapojeny do série s vinutím statoru a svojí impedancí „změkčují“ napájecí síť. Po ukončení rozběhu jsou rozběhové reaktory vyzkotovány VN stykači a během následného chodu kompresoru již další funkci neplní. Po připojení hlavního napájecího napětí ke statorovým cívkám se započne asynchronní rozběh motoru. V okamžiku připojení přesahuje proud statorových cívek několikanásobně jmenovitému proudu motoru. S postupujícím rozběhem se tento statorový proud postupně snižuje a rotor motoru postupně zvyšuje své otáčky. Vzhledem k tomu, že mechanické spřažení motoru s převodovkou kompresoru a se všemi stupni kompresoru je pevné, současně s rotorem motoru se roztáčí i všechny za provozu rotující části kompresoru. Jedná se tedy o středně těžký rozběh motoru. Po dosažení otáček blízkých synchronním přepíná řízení motoru chod motoru z režimu asynchronního do režimu synchronního. Pro zabezpečení synchronního chodu motoru je zapotřebí zdroje stejnosměrného proudu, v případě tohoto motoru se jedná o zdroj o výkonu stovek ampérů, téměř až 1 kA. Tento zdroj je realizován řízeným usměrňovačem renomovaného výrobce se zvláštním napájecím transformátorem, jehož výstupní napětí je přímo přizpůsobeno impedanci budicího vinutí rotoru motoru. Sestava napájecí transformátor, řízený usměrňovač, výkonové stykače a další pomocné obvody se nazývá budicí souprava. Tato budicí souprava má vlastní logické řízení založené na procesoru, který je doplňující výbavou elektroniky řízeného usměrňovače. Budicí proud je veden z výstupu řízeného usměrňovače do budicího vinutí rotoru dvěma měděnými kroužky, které jsou namontovány na ose rotoru. Proud je přiváděn prostřednictvím pevných pružně přitlačovaných uhlíkových (grafitových) kamenů. Toto elektrické spojení se v elektrotechnice nazývá „kluzný kontakt“. Během synchronního chodu motoru je takto trvale a spolehlivě zaručován průtok budicího proudu, což je nezbytnou podmínkou spolehlivého chodu motoru. Proto těžké rotující části kompresoru. Budicí proud indukuje v magnetickém obvodu statorového vinutí stacionární magnetické pole tak, že vektor magnetické intenzity tohoto stacionárního pole je v rovině kolmé na osu otáčení rotoru a prochází touto osou. Pozice tohoto vektoru je ve vztahu k rotoru pevná. Sily, které vznikají na základě asynchronního motoru, se následně udrží tento vektor co nejblíže vektoru intenzity rotujícího magnetického pole, které je vytvářeno průchodem střídavých vztahem fázově posunutých a zároveň synchronizovaných proudů trojfázové soustavy cívky statorového vinutí synchronního motoru. Rotor synchronního motoru se při synchronním chodu otáčí synchronní rychlostí, která je rovna počtu cyklů napájecího napětí za příslušnou jednotku času nebo celistvému podílu tohoto počtu, to dle počtu polů motoru. U čtyřpólového motoru se jedná o polovinu počtu cyklů za jednotku času, u šestipólového to je třetina počtu cyklů, u osmipólového čtvrtina atd. Mechanický moment a zároveň i mechanický výkon motoru je přímo úměrný velikosti
uhl, který mezi sebou vektory intenzit obou magnetických polí navzájem svírají. Vektor intenzity magnetického pole rotoru se ve své rotaci za vektem intenzity magnetického pole statoru ve svém rotačním pohybu opožďuje (chápáno z hlediska orientace po směru otáčení motoru). Bude-li motor mechanicky přetížen, dojde k porušení tohoto pravidla, motor vypadne ze synchronizmu a zastaví se. Elektrické ochrany v obvodech motoru tuto situaci včas detekují a motor bezpečně odpojí od napájení a tím jej ochrání před možným poškozením.

Po tomto vysvětlení pokračujeme v popisu startovací sekvence synchronního motoru. Dosáhne-li motor při svém rozběhu otáček blízkých otáčkám synchronní, řidící obvody (řidící automat) budicí soupravy připojí k budícímu vinutí výstup z výše popísaného řízeného usměrňovače a spustí tento usměrňovač tak, že na výstupu usměrňovače bude jmenovitý budící proud. Zároveň budicí souprava odpojí rozběhový odporník. Tím se dosáhne toho, že řízený usměrňovač je zatěžován pouze budícím vinútím rotoru synchronního motoru a výstupní proud řízeného usměrňovače se rovná budícímu proudu. Motor přeje do synchronních otáček, je dosaženo synchronního chodu. V dalším chodu motoru je možno využít příjemné vlastnosti synchronního motoru – možnosti řízení velikosti jeho jalové spotřeby oběma směry. Běžící synchronní motor je možno využít jako plynule regulovatelnou jalovou zátěž, což je možné od čistě činného charakteru tohoto motoru jako spotřebiče (nulová jalová spotřeba) změnou budícího proudu dosáhnout toho, že se běžící synchronní motor chová jako kombinovaná komplexní zátěž s kapacitním nebo indukčním charakterem. Běžící synchronní motor se zároveň chová jako „čistě“ neharmonického znečištění sítě, dokáže filtrovat neharmonické proudy, které vznikají v síti důsledkem funkce jiných nelineárních spotřebičů, které jsou do společného napájení sítě připojeny. Je-li v důsledku připojení jiných neharmonických zátěží do společného sítě průběh napájecího napětí synchronního motoru zkralen (oproti harmonickému průběhu) nad únosnou míru, projeví se to na nerovnoměrnosti pohybu otáčení rotoru, což znamená zvýšené mechanické namáhání motoru a celé soustavy kompresoru s rizikem vysokého mechanického namáhání až možnosti postupného nebo i náhleho poškození. Mírou tohoto jevu jsou hodnoty mechanických vibrací stroje, což jsou fyzikální veličiny, jejichž velikost se na mnoha místech kompresoru trvale měří. Při dlouhodobém zvýšení namáhání, kdy vibrace přesahují obvyklou úroveň, nedosahují však nebezpečných úrovní, je nutno tuto sledovat, průběžně vyhodnocovat a patřičně upravit délku periody mezi revizemi a opravami stroje. Při rozběhu motoru jsou důležité ještě další aspekty. Jedním z těchto aspektů je extrémní tepelné a mechanické namáhání motoru po dobu rozběhu. Hodnoty statorových proudů při rozběhu motoru několikanásobně překračují jmenovité hodnoty, což znamená velikou tepelnou zátěž pro vinutí motoru, zejména pro rozběhovou klec. Po dosažení trvalého provozního chodu jsou tak vnitřní části motoru na vysokých teplotách a postupně až po uplynutí dlouhé doby (hodina i více) se postupně nadbytečně teplo z těchto částí uvolní a teplo povrchově uvolní motoru, což znamená zvýšení tepelného zatěžení pro vinutí motoru, zejména pro rozběhovou klec. Po dosažení trvalého provozního chodu jsou tak vnitřní části motoru na vysokých teplotách a postupně až po uplynutí dlouhé doby (hodina i více) se postupně nadbytečně teplo z těchto částí uvolní a teplo povrchově uvolní motoru, což znamená zvýšení tepelného zatěžení pro vinutí motoru, zejména pro rozběhovou klec.

Prochladzování zařízení

Po rozběhu hlavního kompresoru se otevřou příslušné armatury kompresoru pro jeho řádnou funkci při záteži a regulaci polohy lopatek prvního stupně kompresoru se dosáhne potřebného průtoku procesního vzduchu do dělicího zařízení. Všechny
olejové mazací okruhy a vodní chladicí a čisticí okruhy řádně plní svoji funkci a stlačený procesní vzduch vstupuje do tří regenerátorů. Výstup procesního vzduchu je v této situaci veden na obě paralelně běžící expanzní turbíny, nevysušený procesní vzduch nesmí vstoupit do rekřítkovací sekc, kterou by „zanesli“ (ucpal) svoji vlhkost. Na expanzních turbínách dojde k expanzi procesního vzduchu s tím, že tepelná energie procesního vzduchu se sníží a toto snížení je přeměněno na energii elektrickou, kterou při své funkcí trvalého brzdění vyrábí asynchronní motor příslušné expanzní turbíny. Tato elektrická energie je vedena zpět do napájecí sítě.

Expandovaný a ochlazený vzduch prochází zbývajícími třemi regenerátory a odchází do atmosféry. Expandovaný procesní vzduch při svém průchodu postupně ochlazuje čedičovou náplň regenerátorů. Po určité době se v každé dvojici regenerátorů funkce regenerátorů vzájemně vymění. Tento proces postupných reverzací se neustále opakuje, takže v dalším pokračování prochlazování procesní vzduch přichází na expanzní turbíny již částečně ochlazen průchodem čedičovou náplní, která byla v předchozích cyklech ochlazena procesním vzduchem z výstupu expanzních turbín. Postupně se celé náplně všech regenerátorů prochladí na teplotu cca. -60 °C, což je již teplota, při které se na náplní „foukaných“ regenerátorů spolehlivě zachycuje vzdusná vlhkost a toto snížení je přeměněno na energii elektrickou, kterou při své funkci trvalého brzdění vyrábí asynchronní motor příslušné expanzní turbíny. Tato elektrická energie je vedena zpět do napájecí sítě.

Expanzní turbíny jsou schopny exploze procesní vzduchu s tím, že tepelná energie procesního vzduchu se sníží a toto snížení je přeměněno na energii elektrickou, kterou při své funkci trvalého brzdění vyrábí asynchronní motor příslušné expanzní turbíny. Tato elektrická energie je vedena zpět do napájecí sítě.

Expandovaný a ochlazený vzduch prochází zbývajícími třemi regenerátory a odchází do atmosféry. Expandovaný procesní vzduch při svém průchodu postupně ochlazuje čedičovou náplň regenerátorů. Po určité době se v každé dvojici regenerátorů funkce regenerátorů vzájemně vymění. Tento proces postupných reverzací se neustále opakuje, takže v dalším pokračování prochlazování procesní vzduch přichází na expanzní turbíny již částečně ochlazen průchodem čedičovou náplní, která byla v předchozích cyklech ochlazena procesním vzduchem z výstupu expanzních turbín. Postupně se celé náplně všech regenerátorů prochladí na teplotu cca. -60 °C, což je již teplota, při které se na náplní „foukaných“ regenerátorů spolehlivě zachycuje vzdusná vlhkost a toto snížení je přeměněno na energii elektrickou, kterou při své funkci trvalého brzdění vyrábí asynchronní motor příslušné expanzní turbíny. Tato elektrická energie je vedena zpět do napájecí sítě.

Expandovaný a ochlazený vzduch prochází zbývajícími třemi regenerátory a odchází do atmosféry. Expandovaný procesní vzduch při svém průchodu postupně ochlazuje čedičovou náplň regenerátorů. Po určité době se v každé dvojici regenerátorů funkce regenerátorů vzájemně vymění. Tento proces postupných reverzací se neustále opakuje, takže v dalším pokračování prochlazování procesní vzduch přichází na expanzní turbíny již částečně ochlazen průchodem čedičovou náplní, která byla v předchozích cyklech ochlazena procesním vzduchem z výstupu expanzních turbín. Postupně se celé náplně všech regenerátorů prochladí na teplotu cca. -60 °C, což je již teplota, při které se na náplní „foukaných“ regenerátorů spolehlivě zachycuje vzdusná vlhkost a toto snížení je přeměněno na energii elektrickou, kterou při své funkci trvalého brzdění vyrábí asynchronní motor příslušné expanzní turbíny. Tato elektrická energie je vedena zpět do napájecí sítě.

Expandovaný a ochlazený vzduch prochází zbývajícími třemi regenerátory a odchází do atmosféry. Expandovaný procesní vzduch při svém průchodu postupně ochlazuje čedičovou náplň regenerátorů. Po určité době se v každé dvojici regenerátorů funkce regenerátorů vzájemně vymění. Tento proces postupných reverzací se neustále opakuje, takže v dalším pokračování prochlazování procesní vzduch přichází na expanzní turbíny již částečně ochlazen průchodem čedičovou náplní, která byla v předchozích cyklech ochlazena procesním vzduchem z výstupu expanzních turbín. Postupně se celé náplně všech regenerátorů prochladí na teplotu cca. -60 °C, což je již teplota, při které se na náplní „foukaných“ regenerátorů spolehlivě zachycuje vzdusná vlhkost a toto snížení je přeměněno na energii elektrickou, kterou při své funkci trvalého brzdění vyrábí asynchronní motor příslušné expanzní turbíny. Tato elektrická energie je vedena zpět do napájecí sítě.

Expandovaný a ochlazený vzduch prochází zbývajícími třemi regenerátory a odchází do atmosféry. Expandovaný procesní vzduch při svém průchodu postupně ochlazuje čedičovou náplň regenerátorů. Po určité době se v každé dvojici regenerátorů funkce regenerátorů vzájemně vymění. Tento proces postupných reverzací se neustále opakuje, takže v dalším pokračování prochlazování procesní vzduch přichází na expanzní turbíny již částečně ochlazen průchodem čedičovou náplní, která byla v předchozích cyklech ochlazena procesním vzduchem z výstupu expanzních turbín. Postupně se celé náplně všech regenerátorů prochladí na teplotu cca. -60 °C, což je již teplota, při které se na náplní „foukaných“ regenerátorů spolehlivě zachycuje vzdusná vlhkost a toto snížení je přeměněno na energii elektrickou, kterou při své funkci trvalého brzdění vyrábí asynchronní motor příslušné expanzní turbíny. Tato elektrická energie je vedena zpět do napájecí sítě.

Expandovaný a ochlazený vzduch prochází zbývajícími třemi regenerátory a odchází do atmosféry. Expandovaný procesní vzduch při svém průchodu postupně ochlazuje čedičovou náplň regenerátorů. Po určité době se v každé dvojici regenerátorů funkce regenerátorů vzájemně vymění. Tento proces postupných reverzací se neustále opakuje, takže v dalším pokračování prochlazování procesní vzduch přichází na expanzní turbíny již částečně ochlazen průchodem čedičovou náplní, která byla v předchozích cyklech ochlazena procesním vzduchem z výstupu expanzních turbín. Postupně se celé náplně všech regenerátorů prochladí na teplotu cca. -60 °C, což je již teplota, při které se na náplní „foukaných“ regenerátorů spolehlivě zachycuje vzdusná vlhkost a toto snížení je přeměněno na energii elektrickou, kterou při své funkci trvalého brzdění vyrábí asynchronní motor příslušné expanzní turbíny. Tato elektrická energie je vedena zpět do napájecí sítě.

Expandovaný a ochlazený vzduch prochází zbývajícími třemi regenerátory a odchází do atmosféry. Expandovaný procesní vzduch při svém průchodu postupně ochlazuje čedičovou náplň regenerátorů. Po určité době se v každé dvojici regenerátorů funkce regenerátorů vzájemně vymění. Tento proces postupných reverzací se neustále opakuje, takže v další...
že se jejich přítomnost začne projevovat na snížení výkonu dělicího procesu. V této době není jiná možnost než celé zařízení „odstavit z provozu“, vyhřát na běžnou teplotu a řádně vysušit. Po odstavení dělicího zařízení se z rektifikační části vypustí kapaliny a celá rektifikační sekc se začne ohřívat příměsňeným množstvím procesního vzduchu, který přichází stejně jak za provozu dělicího zařízení přes regenerátor v tím rozdílem, že na výstupu z baterie regenerátorů před vstupem do rektifikační části se tento procesní vzduch částečně ohřeje v parním ohřívači. Expanzní turbíny jsou zastaveny. Reverzační cykly baterie regenerátorů pokračují a celé dělicí zařízení se postupně prohřívá. Dojde-li proces tavení do situace, že teplota náplní regenerátorů je již vysoká a vlhkost procesního vzduchu začíná náplní regenerátorů procházet, foukání procesního vzduchu se přestane a další ohřev vnitřku dělicí sekc se provádí suchým čistým dusíkem z vedlejšího dělicího zařízení až do doby dosažení běžné teploty. Tím je proces tavení prakticky ukončen a po provedení potřebných oprav a revizí je možno dělicí zařízení znovu uvést do plného provozu.

7.4. Novodobá dělicí zařízení

- **Změny způsobu zásobování**

- **Požadavky na moderní dělicí zařízení**

Požadavky na moderní dělicí zařízení jsou dány aktuální situací na trhu a každý výrobce musí být schopen potřeby trhu efektivně realizovat. Proto se musí moderní zařízení vyznačovat zejména velmi nízkými provozními náklady, možností rychlé a efektivní regulace objemu vyroběných plynů, možností rychlé změny poměru mezi objemy vyroběných plynů v plynné a zkapaňné formě, možností operativního uložení nadbytku některého z kapalných plynů, to vše při nezvýšených výrobních nákladech. Rovněž musí být zařízení extrémně spolehlivé, nikde se již běžně nestaví například dvě výrobní jednotky na jednom místě pro snížení rizika totálního výpadku výroby. Rovněž veliké zásobníky pro možné náhradní zásobování z rezervy, uložené ve zkapaňněném plynu, jsou ve svém provozu neefektivní, protože každá zásoba znamená nejen vysoké investiční náklady při výstavbě zásobníků, ale i dodatečné energetické ztráty, neboť udržování chladu ve velkých zásobnících také něco stojí.
(zkapalněný plyn se ze zásobníku pozvolna odpařuje a tak je doplňován chlad v zásobníku nebo je obsah zásobníku neustále ochlazován jiným způsobem).

Konstrukce moderních dělicích zařízení

Tím, že v dělicím zařízení nejsou regenerátory, je zapotřebí rovněž zajistit jejich druhou funkci – tepelná výměna mezi přicházejícím procesním vzduchem a odcházejícími plynnými produktky. K tomuto účelu slouží deskážebrové tepelné výměníky. Tepelných výměníků je zpravidla v rektifikační sekci více, pro energetickou optimalizaci a nutnost vysoké časové flexibiliti výrobního provozu v dělicím zařízení. Zařízení je zařízení značně složité se spoustou odboček a jiných technologických dílů, které právě umožňují tyto potřebné vlastnosti dělicího zařízení. Důležitým aspektem je i skutečnost, že regenerátory svojí čedičovou náplní představují nejen tepelný výměník, ale zároveň obrovský tepelný akumulátor. Moderní zařízení bez tohoto akumulátoru jsou schopna začít vyrábět na jmenovitý výkon mnohem dříve než klasická zařízení s regenerátory, není totiž nutno dlouze velkým objem čedičové náplné prochladit. Další klíčovou okolností je zcela odlišná energetická bilance moderní rektifikační sekcí, která výrazně značnou nebo zcela podstatnou část plynů ve zkapalněné formě. Chybějící chlad je nutno v rektifikační sekci doplňovat, rektifikační sekcí totiž kromě rektifikace plně i funkci zkapalňovací. Všechna moderní zařízení mají tedy včleněno zařízení pro „doplňování chladu“. Základní komponentou doplňování chladu je další výkonný kompresor, nazývaný recykační (REC). Tento kompresor odebírá z rektifikační sekce ve vhodném místě plyn o normální teplotě a této plyn významně stlačuje. U moderních zařízení může být výkon motoru tohoto kompresoru i vyšší ve srovnání s výkonem motoru hlavního kompresoru. Tento kompresor má rovněž několik stupňů a vodní mezichládeč

Zvyšování efektivity výroby

Velká většina elektrické energie, která je přiváděna do dělicího zařízení k zajištění řádné funkce tohoto zařízení se spotřebovává v kompresorech. Dalšími spotřebiči elektrické energie jsou dříve popisované doplňkové zdroje chladu (tzv. ledničky), následně čerpadla chladicí vody, ventilátory chladicích věží a elektrická ohřívací zařízení pro ohřev regeneračního a tavelového vzduchu. Každý ze zde jmenovaných strojů se vyznačuje energetickou účinností, která představuje relativní číslo, vyjadřující stupeň energetických ztrát příslušného stroje. Čím je účinnost stroje vyšší, tím jsou energetické ztráty menší. L další díly dělicího zařízení mají zásadní vliv na efektivitu dělicího procesu, zde se konstruktéři zaměřují na návrh jednotlivých dílů s ohledem na jejich co nejmenší pneumatický nebo hydraulický odpor.
Nezanedbatelným faktorem jsou rovněž možné provozní ztráty stlačeného procesního vzduchu nebo ztráty jiného plynu v některém místě technologického procesu.

Při návrhu moderního a energeticky efektivního kompresoru jsou uplatňovány moderní vysoko odolné materiály funkčních povrchů a technologicky náročné jakostní způsoby povrchových úprav jednotlivých dílů kompresoru, matematickými modely jsou optimalizovány tvary a profily klíčových dílů stroje. Při návrhu jsou zohledňovány desítky let zkušeností z předchozích realizací a zejména v důsledku této skutečnosti je schopnost dodání účinného, spolehlivého, dobře udržovatelného, efektivně regulovatelného a zároveň přiměřeně nákladného kompresoru omezena na několik cenoměrných světových výrobcců. Rovněž údržbu takového stroje nemůže provádět běžná strojní servisní organizace. Každý kompresor je při svém návrhu optimalizován na konkrétní parametry dle potřeb navazujícího dělicího zařízení se zohledněním podmínek na konkretním místě stavby. Při návrhu kompresoru jsou rovněž zohledňovány konkrétní podmínky u budoucího provozovatele stroje včetně podmínek možnosti běžného nasazení těžké techniky (zejména jeřábová technika). Vysoké nároky jsou klady na perfektní dynamické vyvážení všech rotujících dílů kompresoru. Všechny tyto aspekty platí i pro kvalifikovaný výběr dodavatele hlavního elektrického motoru s tím, že zde musí být zohledněna specifika špičkových vlastností elektrického motoru. Při hodnocení vhodného dodavatele motoru se bere zřetel na zkušenost možného dodavatele z oblasti izolačních vlastností vinutí, v oblasti dlouhodobé odolnosti vůči částečným výbojům a možnosti průběžné diagnostiky úrovne částečných výbojů. Dalšími aspekty jsou zejména nízké tepelné ztráty vinutí, perfektně zajištěné chlazení vinutí a nízké ztráty v magnetických obvodech motoru.

Při výběru dodavatele čerpadel jsou obdobně vyhodnocovány charakteristiky těchto čerpadel s přihlédnutím k energetické účinnosti a k možnosti efektivní otáčkové regulace hydraulického výkonu čerpadla. Dalším důležitým faktorem je očekávaná spolehlivost čerpadel s přihlédnutím k referenční listině možného dodavatele čerpadla.

Pro finální přípravu vzduchu se používají výhradně již zmíněná molekulová síť. Jedná se o ocelové nádoby se speciální náplní, která „filtruje“, tedy v jedné části cyklu práce molekulového síta na sebe naváže veškerou vzdušnou vlhkost a všechn oxid uhličitý, který je v provozním vzduchu obsažen. Tato náplň však musí pro procházející procesní vzduch představovat co nejmenší pneumatický a hydraulický odpor. Vzhledem k tomu, že u obdobného dělicího zařízení by objem možných regenerátorů (stará koncepce) by byl řádově desítky až stovky objemu příslušných nádob molekulových sít, nedochází při reverzaci, která je obdobně jak pro regenerátory rovněž pro molekulová síta nezbytná, k tak vysokým ztrátám stlačeného procesního vzduchu. K tomu ještě pozitivně přispívá skutečnost, že reverzační doba molekulových sít je ve srovnání s regenerátory mnohonásobně delší.

V moderním dělicím zařízení slouží pro zajištění tepelné výměny deskové výměníky. Tyto výměníky jsou konstruovány tak, že mají co největší schopnost tepelné výměny na teplotní stupeň teplotního rozdílu. Rovněž v každé sekci představují pro procházející plyn nebo kapalinu velmi malý pneumatický nebo hydraulický odpor. Zároveň musí tyto výměníky velmi dobře snášet všechny možné teplotní šoky bez vlivu na dlouhodobou těsnost a ostatní technologické parametry. Tepelná setrvačnost těchto výměníků je ve srovnání s regenerátory zanedbatelná, to
znamená velikou úsporu času a energie při nájezdu dělicího zařízení a rovněž minimalizaci energetických ztrát při změnách poměrů spotřeby jednotlivých vyráběných plynů a kapalin.

Destilační kolony moderních dělicích zařízení fungují na stejném principu jako klasické kolony s mnoha patry. Vlastní patra jako překážky, na kterých se shromažďuje destilovaná kapalina a tato následně drobnými otvory padá ve formě kapec dolů proti stoupajícímu proudu par z destilované kapaliny, jsou však nahrazována dlouhými úseky homogenní porézní náplně. Tyto kolony bývají nazývány „náplňové kolony“. Pro kryogenní destilaci se používá náplň kovové načechrané vlny. Na správných místech náplňových úseků bývají vložená skutečná patra, která umožňuje odběr kapalin z příslušného místa destilační kolony. Zásadní výhodou náplňové kolony je její menší pneumatický odpor, což následně znamená menší tlakový rozdíl mezi horní a spodní částí kolony, tedy i úsporu tlaku procesního vzduchu na vstupu do rektifikační sekce.

Moderní dělicí zařízení umožňují dosahovat tak vysoké čistoty výsledných produktů, že je možno vyrobené plynly s bohatou rezervou a zcela bez obav využívat v lékařství nebo v těch oblastech lidské činnosti, kde se zapotřebí zajistit oddělené dýchání (potápění, záchranná služba). Ta dělicí zařízení, která slouží k výrobě těchto plynů (plyny bývají označovány jako medicinální plyn), musí mít všechny díly, vybavení, dokumentaci a celý výrobní proces speciálně certifikován s tím, že příslušné certifikace se periodicky obnovují. Uvolňování medicinálních plynů do expedice musí být prováděno pověřenými osobami se zvláštním oprávněním.

Obr. 133 - Blokové schéma moderního dělícího zařízení

1 - Vstup procesního vzduchu, 2 - Hlavní kompresor, 3 - Molekulová síta, 4 - Hlavní tepelný výměník, 5 - Destilační kolony, 6 - Chladící věže, 7 - Výroba chladu, 8 - Elektrická energie, 9 - Kapalný dusík, 10 - Kapalný kyslík, 11 - Kapalný argon, 12 - Kapalný kyslík, 13 - Kapalný argon, 14 - Chladicí věže, 15 - Destilační kolony, 16 - Hlavní kompresor.
7.5. Měření a regulace v kryogenních technologiích

Měření teplot

Pro měření teplot se téměř výhradně používají normalizované platinové teploměry Pt 100, někdy označované jako RTD. Tento způsob měření využívá teplotní závislosti odporu platinového rezistoru. Tato závislost je precizně definována a na tomto principu založený měřicí obvod umožňuje měření s přesností v řádu desetin stupně. S rostoucí teplotou roste odpor platinového rezistoru, tato závislost však není lineární. Při teplotě -200 °C je hodnota odporu platinového rezistoru Pt 100 18,52 Ohm, při teplotě -100 °C je toto hodnota 60,26 Ohm, při teplotě 0 °C je hodnota 100,00 Ohm, při teplotě +100 °C je hodnota odporu rezistoru Pt 100 138,51 Ohm a při teplotě +200 °C je hodnota rezistoru Pt 100 175,86 Ohm. Vyhodnocování (převod) zjištěné hodnoty odporu na údaj o teplotě se v moderní době provádí matematicky po převodu naměřené hodnoty odporu na číslo v řídicím systému. Vlastní měření elektrického odporu platinového rezistoru Pt 100 je prováděno vstupními obvody řídícího systému tak, aby byly eliminovány parazitní vlivy přechodových odporů a rovněž odpor vedení měřicí trasy. Z tohoto důvodu se používá čtyřvodičové zapojení. Měřicí obvod není napájen trvale, ale jen v kratkých časových intervalech, kdy se uskutečňuje vlastní zjišťování hodnoty odporu. Tím je zamezen nežádoucí ohřev měřicího rezistoru měřicím proudem, což by vznáselo chybu měření. Jelikož jsou tato čidla (senzory) ve většině případů umístěna uvnitř” „zaperlitované“ částí dělicího zařízení a případná výměna čidla by znamenala nutnost „odperlitování“ a následného „zaperlitování“ po výměně čidla (čas několika týdnů, cena milióny Kč), je zpravidla v místě potřeby měření umístěno několik čidel s tím, že nevyužívaná čidla jsou elektříky vyvedena na svorky ve skříňkách na pláště dělicího bloku a v případě poruchy aktivního čidla se příslušný vstup řídícího systému jen přepojí na správně fungující rezervní čidlo. Na ojedinělých místech technologického zařízení se v některých případech používají pro měření teploty termočlánky (nad 100 °C).

Měření tlaků a diferenčních tlaků

Senzory pro měření teploty jsou vždy umístěny v místě měření, snímače tlaku a diferenčního tlaku bývají zpravidla umístěny ve skupinách na společných rámcech, pokud možno “pod střechou”. Z místa měření tlaku nebo diferenčního tlaku vedou většinou několik metrů až několik desítek metrů dlouhá odběrová potrubí. Dříve byla...
tato odběrová potrubí realizována měděnými trubkami, v dnešní době se téměř výhradně používají tenké trubky z nerezové oceli. Propojení na odběrová místa, která jsou zasypána izolačním expandovaným perlitem, bývá realizováno tak, že na ocelovém plášti dělicího bloku jsou v některých místech panely s uzavíracími ventily. Tyto ventily jsou řádně označeny a každý tento ventil je uvnitř bloku propojen s příslušným odběrovým místem. Vnější pneumatické propojení ke snímačům (převodníků) tlaku nebo tlakové diference je pak realizováno až z tohoto uzavíracího ventilu. Pro měření tlaku a diferenciálního tlaku se používají snímače, pracující na tenzometrickém principu. U nově budovaných zařízení se zpravidla pořizují nákladnější snímače v provedení s místním ukazatelem měřené veličiny a s možností elektronického přestavení rozsahu snímače a kalibrace pomocí konverzace s využitím HART protokolu. Snímače tlaku jsou vybavovány trojcestnými ventily pro možnost uzavření pneumatického přívodu do snímače a vypuštění plynu z odběrového potrubí včetně možnosti “profouknutí” toho potrubí. U snímačů diferenciálního tlaku se používají pěticestné ventily, které kromě funkcí, uvedených u trojcestných ventilů, umožňují ještě pneumatické propojení obou vstupů snímače diferenciálního tlaku, takže je možno ověřit přesnost nastavení nuly. Příslušné třiceste nebo pěticestné ventily (ventilové soupravy) bývají umístěny bezprostředně u snímačů, zpravidla výrobce snímače dodávají snímače diferenciální tlaku s ventilovou soupravou jako jeden smontovaný celek. Elektricky jsou tyto snímače zapojeny do vstupních obvodů řídicího systému jako pasivní členy měřicí smyčky. U snímačů diferenciálního tlaku je umožněno napájení těchto snímačů přímo na vodičích měřicích snímačů.

- **Měření průtoku plynů**

Pro měření této fyzikální veličiny se většinou využívá souprava složená z měřicích clony a snímače diferenciálního tlaku. Pro přesné měření je zapotřebí tuto soupravu doplnit o měření tlaku a měření teploty plynu. Parametry clony musí být pro každé měření individuálně vypočteny a clona musí být vyrobená a dodána dle parametrů z tohoto výpočtu. V řídicím systému se pak veličiny diferenční tlak na cloně, tlak v místě měření a teplota v místě měření převedou na veličinu průtočného množství plynu, korigované na skutečné teplotu a tlak.

- **Měření průtoku kapalných plynů**

Pro měření průtočného množství kapalných plynů se využívají drahých, rozměrných, avšak velmi přesných hmotnostních průtokoměrů, které pracují s využitím principu měření Coriolisovy síly. Popis funkce tohoto průtokoměru je nad rámec tohoto textu. Toto měření je velmi přesné a může být využito jako fakturační měření.

- **Měření průtoku vody**

Pro měření průtočného množství vody se většinou používají tradiční indukční průtokoměry. Ve zvláštních případech se používají složité ultrazvukové průtokoměry, založené na principu měření rychlosti vody ve známém profilu potrubí s měřením rychlosti s využitím Dopplerova jevu. Tento způsob měření má tu výhodu, že je možno dodatečně na již používané potrubí za splnění některých podmínek měřicí zařízení nainstalovat bez potřeby zásahu do potrubí. Měřicí zařízení je relativně drahé, známé-li však přesně profil potrubí v místě měření a je-li proudění vody dostatečně laminární, je možné dosáhnout vysoké přesnosti měření.
Měření výšky hladiny

Pro tato měření se kromě principu měření diferenčního tlaku pod a nad hladinou a následného přepočtu používají i různé stavovnacky s elektrickým převodem. Rovněž se používají radarové sondy, které se umístí nad hladinu a měří vlastně vzdálenost hladiny od sondy na principu odrazu mikrovlnného paprsku.

Měření kvality vody

Pro správnou funkci technologického zařízení je zpravidla nutno zajistit měření vodivosti a pH faktoru chladicí vody. Zde se používají speciální složité jednoučelová zařízení. Vysvětlení funkce těchto zařízení je nad rámec tohoto textu.

Měření mechanických vibrací

Toto měření je velmi důležité u všech velkých rotačních strojů. U kryogenního dělení vzduchu se měří vibrace (mechanické chvění) u kompresorů, expanzních turbín a u motorů těchto hlavních strojů. Klasickým principem, používaným pro získání údaje o úrovni mechanického chvění je piezoelektrický snímač, kdy na krystalu tohoto snímače při působení silového namáhání vzniká elektrické napětí. Toto napětí je vedeno do vyhodnocovací jednotky, kde se zjišťuje nejen jeho velikost, ale i spektrální složení časového průběhu okamžitého napětí. Takto je možno na základě zkušeností (z frekvenčního spektra) usuzovat o mechanickém stavu a opotřebení jednotlivých strojních součástí sledovaného stroje. Tato diagnostika umožňuje nejen hlédání okamžitého stavu stroje, ale i postupné v čase sledování opotřebování stroje s možností plánování nutných oprav nebo s predikcí možné poruchy stroje. Dalším principem, který se pro měření úrovně vibrací používá je měření malých vzdáleností mechanicky navzájem nespojených strojních částí (například pevného statoru a otáčející se hřídele). Měřicí sonda měří hodnotu změny malé vzdálenosti (řádu mm) s využitím principu zjišťování magnetických ztrát v elektromagnetickém poli, které je v bezprostřední blízkosti sondy buzeno přiváděným vysokofrekvenčním proudem. Čím je měřený ocelový předmět k sondě blíže, tím jsou ztráty větší. Po řádném elektronickém zpracování je možno dosáhnout schopnosti velmi rychlé reakce na změny vzdálenosti v rozsahu 10⁻⁶ m a lepší. Zařízení, které pracují na tomto principu, jsou levnější ve srovnání s piezoelektrickým měřením, vyžadují však, aby již při návrhu konstrukce stroje bylo s umístěním měřicích sond uvažováno.

Analytická měření

Při procesu dělení vzduchu je na mnoha místech procesu nutno sledovat kvalitativní parametry plynů nebo zkapalněných plynů. Proto jsou v rektifikační sekcii, ale i na jiných místech, odběrové otvory s vydělením plynu z tohoto místa do místnosti analyzátorů, kde je prováděno vlastní vyhodnocování složení vzorku odebraného plynu. Měří se například koncentrace daného plynu nebo jeho znečištění jinými plynly nebo i vlhkostí. Například pro zjišťování čistoty argonu se měří množství nežádoucích plynů v argonu (zejména kyslíku). Vzorek plynu se pomalu napouští do tubice, která je vyplněna porézní náplní. Tato náplň funguje jako rozložené molekulové síto, takže po ukončení napouštění není plyn v tubicí rozložen homogenně, ale v různých místech tubice je různá koncentrace různých složek zkoumané směsi plynů. Následně je obsah tubice postupně vypouštěn (protitlakem vytaňování) ke spalování plamenem s
využitím různé spalovací atmosféry (například vodíko-héliová směs, syntetický vzduch) a dle intenzity plamene v různých časových okamžících během procesu vypraždňování trubice směrem k plamenu je možno usoudit na výši koncentrace některých plynů, které způsobují znečištění argonu.

Pro měření koncentrace kyslíku v rozsahu od 20% do 100% se využívá typické vlastnosti kyslíku – jeho paramagnetizmu. Zařízení průběžně měří magnetické vlastnosti procházejícího plynu a na základě toho vyhodnocuje koncentraci kyslíku v procházejícím plynu. Měření je spojitě a měřicí zařízení se neopotřebovává.

Skupina měření stopových koncentrací nečistot – eletrochemická čidla (elektrický článek). Pro každý měrený plyn je v zařízení speciální elektrochemický článek, který svým velmi malým výstupním napětím citlivě reaguje na množství konkrétního sledovaného plynu ve sledovaném vzorku. Toto čidlo se spotřebovává, je potřeba tato čidla v určitých časových periodách měnit. Například čidlo pro měření znečištění plynů kyslíkem není možno otevřít na vzduchu, v analytickém přístroji se čidlo otevírá samo protržením ochranné membrány tak, aby nedošlo ke kontaktu se vzduchem a tím k otravě a nenávratnému zničení čidla.

Pro měření koncentrací oxidů dusíku se využívá principu infračervené nebo ultrafialové kvantitativní spektrometrie ve vybraných vlnových délách světla dle předem oceňovaných oxidů.

Pro měření koncentrací nebezpečných uhlívodíků se využívá spektrometrie v plamenu, kdy vzorek odebraného plynu je spalován ve speciální atmosféře s tím, že se většinou vyhodnocuje součtová hodnota na ekvivalentní koncentraci metanu CH₄. Pro kryogenní výrobu plynů je mnohdy zapotřebí zjišťovat hmotnost vzduchu, v analytickém přístroji se čidlo otevírá samo protržením ochranné membrány tak, aby nedošlo ke kontaktu se vzduchem a tím k otravě a nenávratnému zničení čidla.

Pro měření koncentrací oxidů dusíku se využívá principu infračervené nebo ultrafialové kvantitativní spektrometrie ve vybraných vlnových délách světla dle předem oceňovaných oxidů.
plynu. Analytické přístroje jsou obecně velmi citlivé, vyžadují opatrné zacházení a dobré podmínky okolí. Proto jsou zpravidla umístovány do zvláštních, mnohdy i klimatizovaných místností. Jedná se o zařízení, jejichž pořizovací cena bývá v řádech stovek tisíc Kč, někdy může cena přesáhnout i částku milión Kč.

- **Prvky pro regulaci**

Pro potřeby řízení technologického procesu je mnohdy zapotřebí plynule nebo dvojstavově řídit polohu ventilu nebo klapky, ve speciálním případě polohu lopatek statorové části turbíny. Pro tyto účely jsou u kryogenních technologií téměř výhradně používány armatury s pneumatickým pohonem. Princip činnosti pneumatického pohonu je založen na pístu, který má možnost se pohybovat v pracovním pneumatickém válci. Přivedením stlačeného suchého plynu (např. dusík nebo tzv. přístrojový – instrumentální vzduch) nad nebo pod píst se dosahuje pohybu pístu, který následně zpravidla vhodným tělem uvádí do pohybu kuželku ovládaného ventilu nebo přestavovací mechanismu, který řídí polohu lopatek statorové části turbíny. Tam, kde není zapotřebí velkého mechanického posunu (zduví), se místo pístu používá pružná membrána, která je pohyblivou přepážkou mezi dvěma prostory nad a pod membránou. Střídavou změnou tlaku plynu nad a pod membránou se dosahuje potřebného pohybu táhla, které následně velmi precizně pohybuje regulační kuželkovou jednotku ovládaného ventilu. Jedná-li se o ventil s potřebou ovládání pouze otevřít/zavřít, je takový ventil vybaven vratnou pohonkou, která zajišťuje polohu ventilu v jedné z krajních pozic – zpravidla pozice bezpečná, tedy připustná pro technologii v případě vypádu napětí nebo ztráty tlaku instrumentálního plynu. Přívádění instrumentálního plynu je řízeno elektromagnetickým (solenoidovým) ventilem pomocí příváděného řídícího napětí. Toto napětí je buďto jmenovité nebo žádné. Jedná se tedy o binární řízení dvou krajních poloh ovládaného ventilu. Samotný solenoidový ventil může být vybaven vratnou pohonkou s využitím logiky dle potřeby technologie (vratná pružinka zpravidla solenoidový ventil zavírá, může tomu však být v případě požadavku na speciální bezpečnostní funkci i opačné), nebo může být vybaven dvěma cívkami (pak je logicky zapotřebí dvou řídících signálu) pro přepínání polohy solenoidového ventilu. Takto konstruovaný solenoidový ventil funguje jako elektropneumatický klopový obvod, přívedením jednoho řídícího napětí po krátkou dobu se přepíná do příslušné polohy, ve které se může setrvať až do příchodu druhého řídícího napětí, kdy se solenoidový ventil přestaví do opačné polohy, ve které pak se může setrvať i bez přítomnosti řídícího napětí. Zpět je možné tento solenoidový ventil překlopit opět krátkým přepínáním řídícího napětí na první cíívku. Tyto řízené ventily, které jsou dálkově přepínány jen ve dvou krajních polohách, mohou být vybaveny koncovými spínacími, které indukují skutečné dosažení příslušné krajní polohy. Jedná se obvykle o kontaktní nebo bezkontaktní spínace, které dávají prostřednictvím dalšího obvodu na digitální vstupy DCS informaci o skutečné poloze ventilu. Znamená to tedy, že ventil je zapojen pro účely řízení na jeden nebo dva digitální výstupy DCS a zároveň je zapojen na jeden nebo dva digitální vstupy DCS.

Pro potřeby dokonalého plynulého nastavování a řízení polohy kuželky ovládaného ventilu je potřeba výbava poněkud složitější. Úkolem ovládaného ventilu je co nejrychlejší přestavení kuželky ventilu tak, aby její poloha odpovídala žádané poloze, jejíž požadovaná hodnota je obvykle standardním proudovým signálem 4 – 20 mA na regulovaný ventil předávána. Regulační ventil je vybaven stejným pohybovým mechanizmem jako ventil s řízením pouze krajních poloh, znamená to tedy, že táhlo,
které řídí polohu kuželky ventilu, spojuje mechanicky tuto kuželku s akční membránou. Do uzavřeného prostoru nad a pod membránou je řídicími ventily příváděn instrumentální plyn. Táhlo mezi membránou a kuželkou ventilu je vybaveno přesným snímačem polohy táhla a tedy i kuželky. Snímač polohy je nastaven obvykle tak, aby při úplném uzavření ventilu dával signál o hodnotě 0 % a při polohy plného otevření ventilu signál 100 %. Regulační ventil je vybaven vlastním složitým regulátorem polohy (PID regulátor), který porovnává skutečnou polohu ventilu ze snímače polohy ventilu se zmiňovaným řídicím signálem požadované hodnoty polohy ventilu. Dle zjištěné regulační odchylky následně regulátor otevírá příslušný vzduchový ventil, kterým je příváděn instrumentální plyn podle potřeby do prostoru nad nebo pod membránou za současného odpouštění instrumentálního plynu z druhého prostoru. Tak se regulační obvod snaží dosáhnout nulové regulační odchylky, kdy skutečná poloha regulačního ventilu odpovídá poloze požadované. Elektronické obvody snímače polohy bývají vybaveny přídavnou částí, která funguje jako „vysilač“ skutečné hodnoty polohy regulačního ventilu s funkcí galvanického oddělení. Regulační ventil pak bývá ještě zapojen další proudovou smyčkou na analogový vstup DCS, kde se toto zařízení chová jako snímač skutečné polohy kuželky regulačního ventilu. Z DCS je tedy předáván na regulační ventil signál úrovně 4 – 20 mA pro řízení polohy tohoto regulačního ventilu a druhá proudová smyčka, která funguje jako analogový vstup DCS dává informaci o skutečné poloze kuželky regulačního ventilu. Regulační ventily bývají dle požadavků jejich využití dopeno výkonového protoku, jejich využití je stejné, že jsou v těchto případech zapojeny obdobně jako u dříve popsaných ventilů s řízením pouze krajních poloh. Rovněž funkce těchto signalačních obvodů je stejná. Regulační ventil tak může využívat připojení na analogový výstup DCS pro potřeby řízení ventilu, připojení na jeden analogový vstup pro přenos údajů o skutečné poloze regulačního ventilu a na dva digitální vstupy pro signalizaci dosažení krajních poloh ventilu. Někdy bývá řízení regulačního ventilu ještě složitější, může být například doplněno o funkci okamžitého otevření nebo uzavření nezávisle na popsaném PID regulátoru, to se děje přidáním solenoidovým ventilům, který je řízen digitálním výstupem z DCS a bez ohledu na hodnotu analogového signálu v řídicí smyčce pro řízení polohy regulačního ventilu z analogového výstupu DCS přiveze instrumentální plyn o plném tlaku do příslušného prostoru nad nebo pod membránou a zároveň z druhého prostoru instrumentálního plynu zcela vypustí. Tohoto řízení se využívá v situacích náhlé potřeby plného otevření nebo uzavření regulačního ventilu zpravidla tehdy, když DCS řeší neobvyklou provozní situaci. Obdobně bývají řízeny mechanismy, které ovládají polohu statorových lopatek kompresorů nebo expanzních turbín. Rozdíl je v tom, že se nejedná o pohyb kuželky, ale o pohyb lopatek. Vlastní akční člen není na rozdíl od regulačních ventilů obvyklá membrána, ale jedná se o pneumatický válc v případě membrány. Všechno ostatní výše popsané vzbavlení vázatelné elektroniky a postupy řízení jsou však prakticky stejné. Existuje i řada regulačních armatur na principu hydraulického pohonu, většinou se zde jedná o pohon tlakovým olejem. Na dělicích zařízeních se těchto armatur nevyužívá.

7.6. Řízení procesu

- Prostředky pro řízení
Pro řízení technologického procesu se využívají moderní systémy PLC s vizualizací nebo většinou komplexní systémy DCS. Tyto řídicí systémy přijímají průběžně informace nejen z čidel (převodníků) neelektrických fyzikálních veličin, ale i signály z doprovodných zařízení, zejména ze silnoproudých rozvaděčů, ale i ze systému požární signalizace nebo z bezpečnostních systémů sledování obsahu kyslíku v atmosféře kolem technologického zařízení. Takto přicházející informace dělíme do několika skupin podle jejich povahy.

Digitální vstupy

Proudové analogové vstupy

 Další skupinu vstupů do DCS představují proudové analogové vstupy. Tyto vstupy převádí normalizovaný měřicí signál (zpravidla 4 – 20 mA) na číselnou informaci s potřebným rozlišením. Hodnota proudu v měřicí smyčce se tedy má pohybovat v uvedeném rozmezí. Je-li hodnota proudu nulová, znamená to přerušenou smyčku (utržený drát, špatný kontakt ve sv once). Hodnoty mírně pod 4 mA zpravidla znamenají překročení rozsahu snímače, hodnoty nad 20 mA pak znamenají překročení rozsahu snímače. Pro správné měření je tedy využíváno jen uvedeného rozsahu s tím, že dolní mez znamená dolní hodnotu rozsahu snímače a horní mez znamená horní hodnotu rozsahu snímače. Hodnoty v mezích rozsahu 4 až 20 mA jsou v DCS dle známých mezi rozsahu fyzikální veličiny snímače převedeny na číslo, které již odpovídá hodnotě fyzikální veličiny v příslušné fyzikální jednotce. V DCS bývají u každého zjištěného fyzikální veličiny stanoveny její přípustné mezery, a to jak přípustné meze technologické, tak přípustné meze alarmové. Při dosažení technologicky přípustné mezery DCS zpravidla vhodným způsobem tuto skutečnost signalizuje a činí o této skutečnosti záznam, při dosažení alarmové mezery DCS navíc informuje nepřehlédnutelným způsobem a navíc dle konkrétní veličiny DCS okamžitě činí nezbytné opatření k zamezení případné havárie nebo poškození například tím, že okamžitě vypíná nějaký motor nebo okamžitě otevírá ventil havarijního vypuštění, někdy zastavuje celý proces. Některé měřené fyzikální veličiny se rychle mění (osculují) kolem střední hodnoty. Jedná se zpravidla o hodnoty tlaku, který je zjišťován například v potrubí s proudícím plynem. Tyto oscilující hodnoty jsou v DCS digitálně filtrovány a až po této filtraci používány k další vizualizaci nebo algoritmickému zpracování.

Vstupy Pt 100
Pro vyhodnocování odporu platnových teploměrů Pt 100 (RTD) se používají speciální analogové vstupy, které umožňují přímé připojení platnového teploměru za dodržení všech požadavků pro tato přesná měření teploty. Pro dosažení vysoké přesnosti měření se volí připojení čtyřvodičové, které svým principem eliminuje většinu možných rušivých vlivů v měřícím obvodu. Tyto vstupní obvody DCS „velmi šetřně“ zjišťují okamžitou hodnotu odporu odporu platnového teploměru a to zejména tím, že pro potřebu zjištění hodnoty odporu pouští do rezistoru měřící proud periodicky jen po krátké okamžiky a ještě periodicky mění polaritu měřicího proudu. V DCS je následně zpracovávána střední hodnota z měření, která byla prováděna při přímé a opačné polaritě měřicího proudu.

- Další způsoby vstupu informací do DCS

Mnohé informace vstupují do DCS ve formě digitální informace, která je přivedena prostřednictvím nějaké informační sběrnice s využitím komunikace ve formě komunikačního protokolu. Například některá inteligentní silnoproudá zařízení (VN ochrany motorů) umožňují přímo s využitím normalizovaného protokolu předávání všech údajů, které tato inteligentní zařízení v sobě zpracovávají. Takové inteligentní zařízení se stává vlastně díky datovému propojení externí součástí DCS, své funkce však splní samostatně nezávisle na aktuálním stavu DCS. Toto je aktuální trend, kdy výbava silnoproudých rozvaděčů pro napájení motorů je modulární s datovým propojením jednotlivých dílů a skříň rozvaděče je možno následně datovou sběrnici propojit přímo na datové porty DCS. Obdobně bývají připojeny moderní mnohofunkční měřiče elektrického výkonu a analyzátor kvality dodávané elektrické energie.

- Výstupy z DCS

Pro účely řízení je zapotřebí zajistit přenos informací z DCS do technologického procesu a správnou interpretaci těchto informací. V technologii kryogenního dělení vzduchu se jedná o řízení různých regulačních ventilů (nastavení polohy těchto ventilů), o řízení uzavíracích ventilů (řízení polohy otevřeno/uzavřeno), dále o zapnutí a vypnutí elektrického motoru prostřednictvím silnoproudých prvků v elektrických rozvaděčích nebo o zapnutí a vypnutí jiného spotřebiče (například topného článku). Toto řízení se uskutečňuje zejména využitím analogových a digitálních výstupů.

- Digitální výstupy

Tyto výstupy mají opačnou funkci k digitálním vstupům. Umožňují tedy řídícím programem DCS ovládat elektrický stav tak, že výstupní svorky příslušného bloku DCS se jeví jako sepnutý nebo rozepnutý kontakt. Povolená zátěž takového kontaktu nebývá příliš vysoká, obvykle je povolená napětí 24 V stejnosměrných a povolený proud 0,5 A s tím, že není vhodné připojovat indukční zátěž příliš vysoké hodnoty indukčnosti. Jsou však k dispozici i bloky digitálních výstupů pro přímé spínání spotřebičů na 230 V DC, z důvodů standardizace a bezpečnosti je však lépe se spínání při těchto hodnotách napětí vyhnout a provést spínání přes převodní relé, které zároveň zajistí galvanické oddělení řídicích a silových obvodů. Obvykle je proto vedle skříňí s DCS umístěna skříň s převodními relé, které svými robustními kontakty zajišťují spolehlivé spínání všech možných akčních členů a zároveň zajistí funkci galvanického oddělení dle potřeby připojení akčních členů.
Analogové výstupy

Funkce těchto výstupů se většinou využívá pro účely nastavení požadované polohy regulačních armatur nebo pro předání požadované hodnoty některé technologické veličiny do podřízeného regulátoru. Již delší dobu se využívá téměř výhradně proudové smyčky s obvyklou úrovni signálu 4 – 20 mA. Jednotlivé analogové výstupy bývají zpravidla galvanicky odděleny od ostatních obvodů DCS, v případě potřeby je možno DCS osadit bloky analogových výstupů, které rovněž zajišťují vzájemné galvanické oddělení jednotlivých výstupních proudových smyček. Bloky analogových výstupů obsahují digitálně-analogové převodník (DAC), které převádí údaje vytvořené řídicím programem a uložený do datového bloku ve vnitřní paměti DCS na odpovídající analogovou hodnotu veličiny proud ve výstupní proudové smyčce. Jsou vyráběny i bloky analogových výstupů s napěťovými výstupy, které jako výstupní veličinu používají napětí s hodnotami v rozsahu -10 až +10 V. Obecně v případě použití analogových signálů je možno návrh zapojení vstupních a výstupních analogových obvodů DCS zdokonalit zapojením zesilujících nebo galvanicky oddělujících prvků.

Centrální jednotky DCS

Centrální jednotky DCS jsou vybavovány dostatečně výkonnými procesory s dostatečně objemnými jednotkami centrální paměti. Veškeré datové výměny v systému jsou náležitě kontrolovány a zajištěny. Pro řízení dělicího zařízení slouží zpravidla několik operátorských stanovišť a většinou ještě jedna inženýrská stanice, která umožňuje ovládat více zásahy do řídicích algoritmů. Veškeré logické kombinační a sekvenční řízení dělicího zařízení zajišťuje řídicí systém.

Řídicí subsystémy

Vzhledem k tomu, že některé části dělicího zařízení jsou při výstavbě nakupovány jako samostatný funkční celek od renomovaného dodavatele, bývají tyto části (zejména se jedná o kompresory a expanzní turbíny – dále stroj) již tímto dodavatelem vybavovány vlastním řídicím systémem, který má zpravidla i vlastní lokální ovládací panel a umožňuje autonomní chod dělávání stroje nezávisle na funkci pro tento stroj nadřazeného hlavního řídicího systému. Vlastní řídicí systém stroje tak umožňuje autonomní ověření správné funkce stroje při provozních zkouškách, rovněž zajišťuje rychlou reakci na nějakou nebezpečně signalizující veličinu, umožňuje bezpečné „odstavení“ stroje při možném výpadku hlavního řídicího systému a navíc dovoluje dodavateli stroje použít některých řídicích algoritmů, které si chce tento dodavatel udržet jako své tajemství nebo chce mít z důvodů garance chráněny algoritmy před zásahem a možnou úpravou. Dodavatel
stroje při konstrukci elektrozařízení, návrhu řídicího systému tohoto stroje, při výběru komponentů pro měření a regulaci a při tvorbě dokumentace musí respektovat podnikové normy a zvyklosti budoucího uživatele. Začlenění stroje pro řízení z hlavního řídicího systému je obvykle realizováno obousměrným rychlým sběrníkem propojením mezi hlavním řídicím systémem a řídicím systémem dodaného stroje. Je-li to z obchodního hlediska možné, dodavatel stroje pro realizaci řídicího systému stroje zvolí technické prostředky dle doporučení budoucího uživatele. Optimalní situace nastává tehdy, když hlavní řídicí systém a řídicí subsystémy různých strojů jsou vybudovány na platformě jednoho renomovaného dodavatele technických prostředků pro řídicí systémy.

- **Dálkové řízení**

Novodobý systém řízení dělicích zařízení je založen na dálkovém řízení. Při dálkovém řízení je operátor v centrálním velíně a řídí současně několik (4-8) zařízení. Za běžného stabilního provozu totiž dělicí zařízení nevyžaduje přímé řízení operátorem, chod zařízení je zcela automatický, všechny provozní parametry a rovněž provozní stavy jednotlivých částí dělicího zařízení jsou nepřetržitě monitorovány s tím, že každá odchylka parametru mimo povolenou oblast je okamžitě oznámována formou hlášení o události nebo poruše. Zároveň jsou všechny snímané hodnoty a další údaje průběžně archivovány, což například umožňuje v případě nějaké vznášející události nebo poruchy zpětný rozbor možné příčiny, neboť porovnáním časového průběhu různých veličin je možno na základě znalostí technologických souvislostí zjistit příčinu poruchy nebo neobvyklé události. Tato možnost je mocným prostředkem pro technické pracovníky a pracovníky údržby dělicího zařízení. Archivované údaje také umožňují provádět různé bilanční výpočty a na základě porovnání vypočtených výsledků mezi různými konstruktivně podobnými nebo v přibližně stejných podmínkách pracujícími dělicími zařízeními činit závěry, které mohou směřovat k opatřením pro zvyšování efektivity chodu dělicího procesu. Vzhledem k tomu, že na jednotlivých dělicích zařízeních se neobvyklé stavy vyskytují náhodně, není obtížné pro jednoho operátora v centrálním velíně dohlížet na dělicí procesy u více dělicích zařízení. Také požadavky na zásahy operátora do chodu dělicího zařízení jsou náhodné a operátor „štíhá“ pracovat se svěřenými dělicími zařízeními současně. Vzhledem k tomu, že během své praxe získávají operátoři zkušenosti řešením různých situací na různých dělicích zařízeních, mohou zkušenosti, získané na jednom dělicím zařízení využít pro řešení neobvyklé situace na jiném zařízení. Během praxe takto získají operátoři zkušenost a kompetence, které by při obsluze pouze jednoho dělicího zařízení nemohli získat. U velikých, provozně klíčových nebo konstrukčně zastaralých dělicích zařízení zpravidla na chod dělicího zařízení dohlíží ještě jeden kvalifikovaný místní pracovník a podle situace v případě potřeby činí na místě nějaký zásah na technologickém zařízení nebo provádí vizuální ověřování stavu technologického zařízení, ve výjimečném případě se souhlasem podniku z řídicího centra „přebírá na sebe“ operátorovskou zodpovědnost. Za účelem zajištění spolehlivého, bezpečného, efektivního a koordinovaného chodu skupiny dělicích zařízení v rámci teritoriálně vymezeného regionu jsou v řídicím centru ještě zaměstnáni technici pracovníci – procesní a systémoví inženýři, koordinátoři výroby a pracovníci technického dozoru. Úkolem těchto pracovníků je přispívat k efektivnímu a bezporuchovému chodu jednotlivých dělicích zařízení zejména využíváním zkušeností a poznatků z chodu jednotlivých dělicích zařízení.
Jelikož mají ve své kompetenci mnoho dělicích zařízení, svým působením přirozeně přenášejí zkušenosti a poznatky získané na jednom dělicím zařízení na ostatní dělicí zařízení. Rovněž pomáhají v případě potřeby technickým pracovníkům u jednotlivých dělicích zařízení, zejména radou nebo v případě větší události nebo plánované opravy přítomností a odborným vedením akce. To jsou hlavní výhody dálkového centrálního řízení jednotlivých dělicích zařízení v rámci regionu.

7.7. Silnoproudá a napájecí zařízení

Pro zajištění chodu dělicího zařízení je hlavní a většinou jedinou energií elektrická energie. Proto je součástí každého dělicího zařízení složitý systém hlavního napájení, záložní napájecí systémy a elektroprovozné, které zajišťují napájení všech elektrických spotřebičů dělicího bloku.

- **Napájecí část VN**

Elektrické napájení areálu dělicího zařízení se uskutečňuje většinou na úrovni VN, někdy však i VVN. Běžně bývá napájení zajišťováno dvěma zpravidla nezávislými přívody elektrické energie na úrovni 6,3 kV, 10 kV nebo i na jiné napěťové úrovni dle možností dodavatele elektrické energie. Je-li hlavní přívod (hlavní přívody) na úrovni VVN, je vstupním zařízením celého napájecího systému malá rozvodna VVN a hlavní síťový VN transformátor. Pro potřeby napájení hlavních motorů (výkony stovky kW až desítky MW) slouží motorevý vývod VN. Každý z těchto vývodů je vybaven inteligentní elektronickou ochranou, která všestranně chrání připojený motor před elektrickým a tepelným poškozením. Další vývody zajišťují připojení statických kompenzátorů jalové energie (v případě použití asynchronních motorů u hlavních strojů) a připojení transformátoru pro napájení části NN. Celkové řízení VN části je zajišťováno hlavním řídícím systémem dělicího zařízení a řídícími subsystémy jednotlivých strojů. Řízení statických kompenzátorů bývá autonomní. Je-li dělicí zařízení napájeno ze sítě, ze které je rovněž napájen nějaký veliký průmyslový podnik, zejména hnět, bývá napájecí část VN vybavena zařízením pro monitorování kvality dodávané elektrické energie. Tento analýzorátor kvality dodávané elektrické energie slouží k průběžnému sledování čistoty dodávané elektrické energie, tedy odchylek časového průběhu napájecího napětí od sinusového průběhu. Analýzorátor provádí zjišťování úrovne jednotlivých harmonických složek dodávaného napětí, což je následně využíváno při zkoumání možných příčin zvýšené úrovne vibrací na hlavních strojích dělicího zařízení (na kompresorech).

- **Napájecí část NN**

Napájecí část NN slouží k napájení téměř všech elektrických spotřebičů. Výjimkou jsou zpravidla motory kompresorů, které bývají napájeny na úrovni VN. U některých dělicích zařízení bývá instalován záložní zdroj elektrické energie – dieselgenerátor, tento záložní zdroj však svým výkonem nebývá dimenzován na celou elektrickou spotřebu dělicího zařízení, slouží při delším výpadku v napájení dělicího zařízení pro pohon vybraných částí dělicího zařízení, jejichž funkce je při delším výpadku zejména z bezpečnostních a provozních důvodů nezbytná. Dieselgenerátor je rotační soustrojí, které se skládá ze vznětového spalovacího motoru a elektrického synchronního generátoru. Jedná se tedy vlastně o větší nemobilní elektrocentrálu. Tento záložní zdroj elektrické energie musí být vybaven spolehlivým autonomním startovacím zařízením. V nádrži pro palivo musí být vždy dostatečné množství
čerstvé motorové nafty. Diesel generátor však není schopen nahradit dodávku elektrické energie v případě vápního výpadku elektrického napájení z veřejné sítě bez přerušení, potřebuje nějaký čas ke svému rozběhu. Proto ty části delšího zařízení, které nesmí zůstat bez elektrického napájení, jež je vlastní řídící systém a některé pomocné obvody různých bezpečnostních systémů, jsou zpravidla napájeny prostřednictvím nepřerušovaných zdrojů napájení (UPS). Tyto zdroje bývají většinou dimenzovány tak, že jsou schopny z energie, uložené ve svých akumulátoch, bezpečně a spolehlivě napájet své spotřebiče po dobu deset a více minut. V případě ztrát napájecího napětí na vstupu těchto UPS plynule přecházejí do režimu práce z příslušného spotřebiče výpadek v podání elektrické energie vůbec „nepozná“.

7.8. Manipulace, skladování, doprava

Pro manipulaci se stlačenými plyny, některých topných článků, řídících systémů a dalších lokálních subsystémů slouží rozváděče NN. Komunikace mezi rozváděči NN a komponenty řídících systémů zpravidla zajišťuje komunikace vybavení stravy s možností výběru využitím běžného průmyslového sběrnice. Všechny provozní a poruchové stavové jednotlivých spotřebičů jsou přímo monitorovány v příslušných řídících systémech. Pro efektivní řízení výkonu vodních čerpadel, čerpadel kryogenen kapalin a ventilátorů chladicích větších čerpadel bývají tyto spotřebiče napájeny prostřednictvím frekvenčních měničů. Úspornější řešení představuje komunikace elektronických softstartérů pro plynulý rozběh motorů vodních čerpadel a především ventilátorů chladicích větcí. Řízení moderních frekvenčních měničů včetně monitorování všech parametrů měničů a napájeného motoru se uskutečňuje prostřednictvím průmyslového přístroje. Konstrukční provedení rozvaděčů NN musí umožňovat snadnou a zejména rychlou výměnu nesprávně fungujícího dílu, z tohoto důvodu jsou rozváděče napájány jako modulová („šuplíková“). Pro každý spotřebič a jeho přívodu je zajištěna náležitá ochrana, u vybraných spotřebičů je kromě funkce spínání zajištěno i stupňovité řízení výkonu nebo možnost časově pulzního řízení výkonu. Hlavní NN spotřebiče měívá v rozváděčích NN osazené měření činného výkonu nebo levnější měření odebraného plynů.

224
řádně označeny tak, aby si každý účastník zejména silničního provozu uvědomoval nebezpečí vyplývající z nákladu, který je přepravován.

Shrnutí pojmů

Normální podmínky plynu znamenají tlak plynu 101325 Pa (normální tlak označení \(p_n \)) a teplotu 0 °C = 273,15 K (normální teplota, ve vyjádření Kelvinovy stupnice označení \(T_n \)). K „normálním podmínkám“ je vztažen molární objem ideálního plynu \(V_m \) (normální molový objem), který činí 22,41383 Nm\(^3\)/kmol.

Vzduch je základní surovinou pro výrobu některých technických plynů, jedná se o směs plynů v zemské atmosféře.

Méně a více hustý vzduch - vzduch je všude kolem nás, s rostoucí nadmořskou výškou se hustota vzduchu snižuje a ve vysokých horách je vzduch řídký, což způsobuje problémy jak živým organizmům (například člověk při vysokohorské turistice nebo horolezení), tak i některým strojům.

Dusík je dvojatomový plyn, který je v přírodě ve vzduchu nejvíce zastoupen.

Kyslík je rovněž dvojatomový plyn a je druhou nejvíce zastoupenou plynnou složkou vzduchu.

Inertní plyny jsou plynů, jejichž molekuly nereagují s jinými plyny, a tedy nevytvářejí sloučeniny. Koncentrace těchto plynů ve vzduchu je velmi nízká (kromě argonu cca 1 %) a tak jsou tyto plynové kanálky označovány jako „vzácné plyny“.

Hélium je jednoatomový vzácný plyn, má jedinečné fyzikální vlastnosti. Nejvíce hélia je na našem Slunci.

Argon je jednoatomový vzácný plyn, ze všech vzácných plynů je ve vzduchu zastoupen nejvíce, proto je běžně využíván zejména v hutních technologiích.

Xenon je velmi dobře elektricky vodivý, této skutečnosti se využívá v osvětlovací technice, kde je plyn xenon používán jako náplň pro elektrické výbojky. Ve vzduchu má velice malou objemovou i hmotnostní koncentraci a jedná se tedy o plyn velmi vzácný.

Krypton stejně jako xenon je velmi dobře elektricky vodivý a je rovněž využíván ve světelnétechnice jako náplň výbojkových zdrojů světla. Toho se využívá zejména při naplňování již tradičních výbojových světel – máže světelného efektu.

Neon je velmi známým inertním plynem. Jeho známost vychází z používání tohoto plynu jako náplně výbojkových trubic, které se používají zejména ke tvorbě svíticích nápisů (neónová reklama).

Radon je nestabilní chemický prvek (plyn), který nemá stabilní izotop. V přírodě vzniká jako produkt radioaktivního rozpadu jader prvků radia, thoria a uranu. Radon je plyn radioaktivní a dalšími radioaktivními dávkami zaniká. Z tohoto důvodu není možné radon prakticky využívat, je možné jej použít pouze k experimentálním účelům.
Oxid uhličitý je jedním z důležitých plynů, který je obsažen ve vzduchu, oxid uhličitý je dvouprvková třiatomová sloučenina kyslíku a uhlíku – oxid uhličitý (anglicky carbon dioxide), chemický vzorec CO₂.

Voda je téměř všudypřítomná složka vzduchu. V přírodě je nejvíce vody v mořích a oceánech, je součástí organických látěk.

Uhlovodíky jsou organické látky, jejichž molekula se skládá z atomů vodíku a uhlíku. Základní rozdělení uhlovodíků je na uhlovodíky alifatické a aromatické.

Kryogenní technologie jsou považovány za technologické procesy, které probíhají za velmi nízkých – kryogenních teplot. V dostupných pramenech se uvádí, že hranicí teplotou pro tyto technologie je teplota -180 °C, obecně však v technické praxi není tento pojem chápán příliš přísně a i teploty nad touto hranicí jsou pokládány za kryogenní.

Destilace je fyzikální proces, při kterém je možno rozdělit směsi dvou či více kapalin, a to v případě, že se jedná o kapaliny s rozdílným bodem varu. Rovněž je možno procesem destilace z kapalin „odstranit“ pevné látky, které byly v kapalině původně rozpuštěny nebo rozptýleny. Asi nejvíce je procesu destilace využíváno v petrochemickém průmyslu.

Zařízení pro kryogenní dělení vzduchu se nazývá dělicí přístroj, toto označení je z hlediska českého jazyka poněkud zavádějící, jedná se zpravidla o zařízení rozměru několika rodinných domů a s výškou desítky metrů. V dalším textu se proto bude používat označení dělicí zařízení nebo jen zařízení. V anglickém jazyce se používá označení „air separation unit“, ve zkratce ASU, v německém jazyce „die Luftzerlegungsanlage“ ve zkratce LZA.

Dělení vzduchu je proces kryogenní, založený na zkapalnění vzduchu a jeho následné frakční destilaci. Potřebné zařízení je relativně složité, proces potřebuje značné množství energie, umožňuje však získání jednotlivých plynů o velmi vysoké čistotě a nepředstavuje pro životní prostředí žádnou ekologickou zátěž, zejména nevytváří žádné odpadní látky.

Kyslíková čistota je taková čistota předmětů, která umožňuje bez rizika vznícení nebo výbuchu umístit tyto předměty do atmosféry čistého kyslíku.

Komprese vzduchu je první fázi procesu dělení vzduchu - stlačení vzduchu.

Kompresor je zařízení, které slouží ke stlačení. Existuje mnoho druhů kompresorů, pro potřeby větších výrobních jednotek se zpravidla používají kompresory, které pracují na principu vzduchové turbíny. Pro tyto kompresory je všeobecně používán název „turbokompresor“.

Turbokompresor je rotační stroj, kdy rotující část turbíny – rotor – žene svými lopatkami vzduch vhodným směrem, takže způsobuje proudění a zároveň stlačování vzduchu. Turbokompresory jsou ve většině případů poháněny elektrickými motory nebo parními turbínami.

Sprchový chladič je technologický díl, který slouží k močřému vyčištění a zároveň k ochlazení procesního vzduchu. Je válcového tvaru s vertikálně umístěnou osou, vyroben z běžné konstrukční oceli.
Rektifikační část představuje velmi důmyslné a spolehlivé zařízení, které je klíčovou částí dělicího zařízení. Tato část je umístěna ve společném obalu – kovovém plášti z ocelových plechů.

Procesní vzduch je vzduch, který slouží jako surovina pro rektifikační proces.

Regenerátor (sekce regenerátorů) slouží k odstranění vody a oxidu uhličitého, skládající se ze tří dvojic regenerátorů. Regenerátor je ocelová válcová nádoba o průměru cca. 3 m a výšce cca. 10 m, stojící tak, že osa regenerátoru je svislá. Regenerátor je zcela vyplněn čistým čedičovým štěrkem.

Rektifikační sekce je souhrnný název pro soustavu destilačních kolon, adsorbérů, tepelných výměníků a dalších dílů. Všechny tyto díly jsou zpravidla vyrobeny z hliníku.

Nájezd dělicího zařízení je proces, kdy se postupně dělicí zařízení uvádí do plného, bezpečného a stabilizovaného provozu.

Spuštění kompresoru je doba od zjišťování připravenosti kompresoru ke startu do doby plného provozního zatížení kompresoru.

Prochlazování zařízení je časově náročný proces, kdy se postupně všechny za provozu studené části dělicího zařízení prochladzují. Správný průběh prochlazování musí zajistit eliminaci dělicího zařízení vodou a oxidem uhličitým, rovněž musí být zabráněno možnému zvýšení mechanického namáhání v důsledku tepelné dilatace jednotlivých dílů.

Tavení dělicího zařízení je opatrný zpětný ohřev dělicího zařízení na normální teplotu. Zajištuje odstranění všech zbytků vodní vlhkosti a oxidu uhličitého z dělicího zařízení, zároveň nesmí možnými tepelnými dilatacími narušit mechanickou pevnost a těsnost dělicího zařízení.

Deskožebróvé tepelné výměníky jsou moderní díly dělicího zařízení, které slouží k tepelné výměně mezi proudy plynů a kapalin. Dají se dle potřeby konkrétního zařízení různě kombinovat. Hlavními parametry jsou nízký tepelný odpor a vysoká odolnost proti tepelným šokům.

Měření teplot - pro měření teplot se téměř výhradně používají normalizované platinové teploměry Pt 100, někdy označované jako RTD. Tento způsob měření využívá teplotní závislost odporu platinového rezistoru. Tato závislost je precizně definována a na tomto principu založen obvod umožňuje měření s přesností v řádu desetin stupně.

Měření tlaků a diferenčních tlaků - snímače tlaku a diferenčního tlaku bývají zpravidla umístěny ve skupinách na společných rámích, pokud možno “pod střechou”. Pracují na tenzometrickém principu. S místy měření jsou propojeny „odběrovými“ trubkami.

Měření průtoku plynů - pro měření této fyzikální veličiny se většinou využívá soupravy složené ze součástí clony a snímače diferenčního tlaku. Pro přesné měření je zapotřebí tuto soupravu doplnit o měření tlaku plynu a měření teploty plynu.

Měření průtoku kapalných plynů - pro měření průtočného množství kapalných plynů se využívá drahých, rozměrných, avšak velmi přesných hmotnostních průtokoměrů, které pracují s využitím principu měření Coriolisovy síly.
Měření průtoku vody - pro měření prútočného množství vody se většinou používají tradiční indukční průtokoměry. Ve zvláštních případech se používají složité ultrazvukové průtokoměry, založené na principu měření rychlosti vody ve známém profilu potrubí s měřením rychlosti s využitím Dopplerova jevu. Tento způsob měření má tu výhodu, že je možno dodatečně na již používané potrubí za splnění některých podmínek měřicí zařízení nainstalovat bez potřeby zásahu do potrubí.

Měření výšky hladiny - pro měření výšky hladiny se kromě principu měření diferenčního tlaku pod a nad hladinou a následného přepočtu používají i různé stavoznaky s elektrickým převodem. Rovněž se používají radarové sondy, které se umístí nad hladinu a měří vlastně vzdálenost hladiny od sondy na principu odrazu mikrovlnného paprsku.

Měření kvality vody - pro správnou funkci technologického zařízení je zpravidla nutno zajistit měření vodivosti a pH faktoru chladicí vody. Zde se používají speciální složitá jednoúčelová zařízení.

Měření mechanických vibrací – u dělicích zařízení se měří vibrace (mechanické chvění) u kompresorů, expanzních turbín a u motorů těchto hlavních strojů. Klasickým principem, používaným pro získání údajů o úrovni mechanického chvění je piezoelektrický snímač, kdy na krystalu tohoto snímače při působení silového namáhání vzniká elektrické napětí. Toto napětí je vedeno do vyhodnocovací jednotky, kde se zjišťuje nejen jeho velikost, ale i spektrální složení časového průběhu okamžitého napětí. Dalším principem, který se pro měření úrovně vibrací používá je měření malých vzdáleností mechanicky navzájem nespojených strojních částí (například pevného statoru a otáčející se hřídele). Měřicí sonda měří hodnotu změny malé vzdálenosti (řádu mm) s využitím principu zjišťování magnetických ztrát v elektromagnetickém poli, které je v bezprostřední blízkosti sondy buzeno příváděným voskofrekvenčním proudem. Čím je měřený ocelový předmět blíže sondě, tím jsou ztráty větší. Po řádném elektronickém zpracování je možno dosáhnout schopnosti velmi rychlé reakce na změny vzdálenosti v rozsahu 10^-6 m a lepší. Zařízení, které pracují na tomto principu, jsou levnější ve srovnání s piezoelektrickým měřením, vyžadují však, aby již při návrhu konstrukce stroje bylo s umístěním měřicích sond uvažováno.

Analytická měření - při procesu dělení vzduchu je na mnoha místech procesu nutno sledovat kvalitativní parametry plynů nebo zkopalněných plynů. Proto jsou v rektifikační sekci, ale i na jiných místech, odběrové otvory s vyvedením plynu z tohoto místa do místnosti analyzátorů, kde je prováděno vlastní vyhodnocování složení vzorku odebíraného plynu. Analytické přístroje jsou velmi složité, zpravidla neuniverzální, drahá a choulostivá zařízení. Vyžadují automatickou kalibraci, proto bývají ještě připojeny k lahvim s kalibračním plynom.

Prvky pro regulaci - pro potřeby řízení technologického procesu je mnohdy zapotřebí plynule nebo dvojstavově řídit polohu ventilu nebo klapky, ve speciálním případě polohu lopatek statorové části turbíny. Pro tyto účely jsou u kryogenních technologií téměř výhradně používány armatury s pneumatickým pohonem.
Prostředky pro řízení - pro řízení technologického procesu se využívají moderní systémy PLC s vizualizací nebo většinou komplexní systémy DCS.

Digitální vstupy - určité množství informace vstupuje do DCS ve formě dvojihodnotové (binární), tedy hodnota ano/ne. Prakticky se jedná o jednoduchý elektrický obvod, který je zapojen tak, že na příslušný digitální vstup DCS je prostřednictvím spínaného kontaktu přiváděno napětí zpravidla 24 V stejnosměrých. Seznámení kontaktu, který je ovládán nějakým stavem na technologii, znamená přítomnost napětí na digitálním vstupu a tedy logickou jedničku. Rozepnutí kontaktu znamená nepřítomnost napětí na příslušném vstupu a to znamená stav logická nula.

Proudové analogové vstupy převádějí normalizovaný měřicí signál (zpravidla 4 – 20 mA) na číselnou informaci s potřebným rozlišením. Hodnota proudu v měřicí smyčce se tedy má pohybovat v uvedeném rozmezí. Je-li hodnota proudu nulová, znamená to přerušenou smyčku (utržený drát, špatný kontakt ve svorce). Hodnoty mírně pod 4 mA zpravidla znamenají překročení rozsahu snímače, hodnoty nad 20 mA pak překročení rozsahu snímače. Pro správné měření je tedy využíváno jen uvedeného rozsahu s tím, že dolní mez znamená dolní hodnotu rozsahu snímače a horní mez znamená horní hodnotu rozsahu snímače. Hodnoty ve mezích rozsahu 4 až 20 mA jsou v DCS dle známých mezer rozsahu fyzikální veličiny snímače převedeny na číslo, které již odpovídá hodnotě fyzikální veličiny v příslušné fyzikální jednotce.

Vstupy Pt 100 - pro vyhodnocování odporu platinových teploměrů Pt 100 (RTD) se používají speciální analogové vstupy, které umožňují přímé připojení platinového teploměru za dodržení všech požadavků pro tato přesné měření teploty. Pro dosažení vysoké přesnosti měření se volí připojení čtyřvodičové, které svým principem eliminuje většinu rušivých vlivů v měřicím obvodu.

Další způsoby vstupu informací do DCS - mnohé informace vstupují do DCS ve formě digitální informace, která je předepsána prostřednictvím nějakého informačního sběrnice s využitím komunikace ve formě komunikačního protokolu.

Výstupy z DCS zajišťují přenos informací z DCS do technologického procesu a správnou interpretaci těchto informací.

Digitální výstupy mají opačnou funkci k digitálním vstupům. Umožňují tedy řídícímu programu DCS ovládat elektrický stav tak, že výstupní svorky příslušného bloku DCS se jeví jako sepnutý nebo rozepnutý kontakt. Povolená zátěž takového kontaktu nebývá příliš vysoká, obvykle je povolené napětí 24 V stejnosměrých a povolený proud 0,5 A s tím, že není vhodné připojovat indukční zátěž příliš vysoké hodnoty indukčnosti. Jsou však k dispozici i bloky digitálních výstupů pro přímé spínání spotřebičů na 230 V DC, z důvodů standardizace a bezpečnosti je však lépe se spínání při těchto hodnotách napětí vyhnout a provést spínání přes převodní relé, které zároveň zajistí galvanické oddělení řídicích a silových obvodů. Obvykle je proto vedle skříně s DCS umístěna skříň s převodními relé, které svými robustními kontakty zajistí spojehvěnné spínání všech možných akčních členů a zároveň zajistí funkci galvanického oddělení dle potřeby připojení akčních členů.
Analogové výstupy - funkce těchto výstupů se většinou využívá pro účely nastavení požadované polohy regulačních armatur nebo pro předání požadované hodnoty některé technologické veličiny do podřízeného regulátoru. Již delší dobu se využívá téměř výhradně proudové smyčky s obvyklou úrovní signálu 4 – 20 mA. Jednotlivé analogové výstupy bývají zpravidla galvanicky odděleny od ostatních obvodů DCS, v případě potřeby je možno DCS osadit bloky analogových výstupů, které rovněž zajišťují vzájemné galvanické oddělení jednotlivých výstupních proudových smyček.

Centrální jednotky DCS jsou vybavovány dostatečně výkonnými procesory s dostatečně objemnými jednotkami centrální paměti. Pro řízení dělitelného zařízení slouží zpravidla několik operátorských stanovišť a většinou ještě jedna inženýrská stanice, která umožňuje i on-line drobné zásahy do řídících algoritmů. Veškeré logické kombinační a sekvenciální řízení dělitelného zařízení zajišťuje řídicí systém. Rovněž většina úkolů klasické regulace je zajištěvány numerickým algoritmem, který nahrazuje klasický analogový PID regulátor.

Řídicí subsystémy – mnohé samostatně „na klíč“ nakupované části dělitelného zařízení (zejména se jedná o kompresory a expantní turbíny – dále stroj) jsou dodavatelem vybavovány vlastním řídicím systémem, který má zpravidla i vlastní lokální ovládací panel a umožňuje samostatný chod dodávaného stroje nezávisle na funkci pro tento stroj nadřazeného hlavního řídicího systému. Tento samostatný subsystém je vhodné začlenit do struktury hlavního řídicího systému.

Dálkové řízení - novodobý systém řízení dělitelného zařízení je založen na dálkovém řízení. Při dálkovém řízení je operátor v centrálním velínu a řídí současně několik (4-8) zařízení. Za běžného stabilního provozu totiž dělitelné zařízení nevyžaduje přímé řízení operátorem, chod zařízení je zcela automatický, všechny provozní parametry a rovněž provozní stavby jednotlivých částí dělitelného zařízení jsou přesně monitorovány s tím, že každá odchylka parametru mimo povolenou oblast je okamžitě oznamována formou hlášení o události nebo poruše.

Napájecí část VN - elektrické napájení areálu dělitelného zařízení se uskutečňuje většinou na úrovni VN, někdy však i VVN. Běžné bývá napájení zajištěvá dvěma zpravidla nezávislými přívody elektrické energie na úrovni 6,3 kV, 10 kV nebo i na jiné napěťové úrovni dle možností dodavatele elektrické energie.

Napájecí část NN slouží k napájení těměř všech elektrických spotřebičů. Výjimkou jsou zpravidla motory kompresorů, které bývají napájeny na úrovni VN. U některých dělitelných zařízení bývá instalován záložní zdroj elektrické energie – dieselgenerátor, tento záložní zdroj však svým výkonem nebyvá dimenzován na celou elektrickou spotřebu dělitelného zařízení, slouží při delším výpadku v napájení dělitelného zařízení pro pohon vybraných částí dělitelného zařízení, jejichž funkce je při delším výpadku zajištěna z bezpečnostních a provozních důvodů nezbytná. Naprostou nepřerušované napájení kritických částí (zejména hlavní řídicí systém a operátorská stanoviště, nouzové osvětlení a další bezpečnostní prvky) zajišťují zdroje nepřerušovaného napájení (UPS).
Rozvodná část NN slouží pro napájení téměř všech motorů, některých topných článků, řídicího systému a dalších lokálních subsystémů slouží. Komunikace mezi rozvaděči NN a komponenty řídicích systémů zpravidla zajišťuje kontaktní výměna na úrovni 24 V, u nově stavěných zařízení bývají často jednotlivé vývody silnoproudých rozvaděčů vybavovány inteligentními sílovými prvky s možností řízení využitím běžné průmyslové sběrnice.

Tlakové láhve slouží k uchovávání stlačených plynů.